Geometric Variational Problems for Surface Tension Driven Systems
表面张力驱动系统的几何变分问题
基本信息
- 批准号:2000034
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will use tools from analysis to investigate fundamental mathematical models for physical systems driven to equilibrium by surface tension effects. A complete mathematical understanding of these systems is useful in addressing biological and engineering problems of mechanical nature, as it allows investigators to obtain analytical predictions on the implied consequences of physical theories motivated by such systems. At the same time, obtaining such predictions requires one to address hard mathematical challenges, which stimulates the growth and development of new and useful mathematical tools and methods, thus advancing the field of mathematics as well. The project will also provide research training opportunities for graduate students. A first series of questions addressed in this project concern the use of minimal surfaces as models for liquid films at equilibrium. The classical idealization of liquid films as two-dimensional surfaces cannot account for liquid films properties where the thickness of the film plays a crucial role (e.g., the relation between the stability of a given geometric film configuration and the size of the diameter of the film itself). This project intends to develop a model for liquid films as three-dimensional regions with a small volume, which was recently proposed by the principal investigator and his collaborators, and which is capable of explaining physical features not accessible by classical approaches. A second direction of investigation includes rigidity theorems for minimal and constant mean curvature surfaces possessing physically meaningful singularities. This project investigates the possibility of systematically developing them into quantitative almost-rigidity statements, and of extending their applicability to non-smooth settings, with motivations in the description of equilibrium configurations in capillarity theory and in the asymptotic behavior of extrinsic curvature flows. Finally, the vast reach of this circle of ideas naturally leads to an investigation of related problems for isoperimetric clusters, fractional perimeters and fractional mean curvatures, and for geometric flows and equilibrium shapes in diffused interface models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目将使用分析中的工具来研究由表面张力效应驱动到平衡的物理系统的基本数学模型。对这些系统的完整的数学理解有助于解决机械性质的生物和工程问题,因为它使研究人员能够获得对这些系统所驱动的物理理论的隐含后果的分析预测。与此同时,要获得这样的预测,就需要应对严峻的数学挑战,这刺激了新的有用的数学工具和方法的增长和发展,从而也推动了数学领域的发展。该项目还将为研究生提供研究培训机会。本项目涉及的第一系列问题涉及使用极小表面作为平衡状态下的液膜模型。经典的将液膜理想化为二维表面不能解释液膜的性质,其中液膜的厚度起着至关重要的作用(例如,给定几何膜构型的稳定性与膜本身直径的大小之间的关系)。该项目旨在开发一个由主要研究人员和他的合作者最近提出的、能够解释经典方法无法获得的物理特征的三维小体积液膜模型。第二个研究方向包括具有物理意义奇点的最小和常平均曲率曲面的刚性定理。这个项目研究了系统地将它们发展成定量的几乎刚性的陈述的可能性,以及将它们的适用性扩展到非光滑环境的可能性,动机是描述毛细理论中的平衡构型和外部曲率流的渐近行为。最后,这一思想圈的广泛覆盖自然导致了对等周簇、分数周长和分数平均曲率以及扩散界面模型中的几何流和平衡形状的相关问题的调查。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Minimizing cones for fractional capillarity problems
最小化分数毛细管问题的锥体
- DOI:10.4171/rmi/1289
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Dipierro, Serena;Maggi, Francesco;Valdinoci, Enrico
- 通讯作者:Valdinoci, Enrico
Rigidity theorems for best Sobolev inequalities
最佳索博列夫不等式的刚性定理
- DOI:10.1016/j.aim.2023.109330
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:Maggi, Francesco;Neumayer, Robin;Tomasetti, Ignacio
- 通讯作者:Tomasetti, Ignacio
Collapsing and the convex hull property in a soap film capillarity model
皂膜毛细管模型中的塌陷和凸包特性
- DOI:10.1016/j.anihpc.2021.02.005
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:King, Darren;Maggi, Francesco;Stuvard, Salvatore
- 通讯作者:Stuvard, Salvatore
Smoothness of Collapsed Regions in a Capillarity Model for Soap Films
皂膜毛细管模型中塌陷区域的平滑度
- DOI:10.1007/s00205-021-01727-3
- 发表时间:2022
- 期刊:
- 影响因子:2.5
- 作者:King, Darren;Maggi, Francesco;Stuvard, Salvatore
- 通讯作者:Stuvard, Salvatore
Symmetry and Rigidity of Minimal Surfaces with Plateau-like Singularities
具有高原状奇点的最小曲面的对称性和刚度
- DOI:10.1007/s00205-020-01593-5
- 发表时间:2021
- 期刊:
- 影响因子:2.5
- 作者:Bernstein, Jacob;Maggi, Francesco
- 通讯作者:Maggi, Francesco
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesco Maggi其他文献
Isoperimetric Residues and a Mesoscale Flatness Criterion for Hypersurfaces with Bounded Mean Curvature
- DOI:
10.1007/s00205-024-02039-y - 发表时间:
2024-09-19 - 期刊:
- 影响因子:2.400
- 作者:
Francesco Maggi;Michael Novack - 通讯作者:
Michael Novack
Cardiac contractility modulation by non-excitatory electrical currents. The new frontier for electrical therapy of heart failure.
非兴奋性电流调节心脏收缩力。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
G. Augello;V. Santinelli;G. Vicedomini;P. Mazzone;S. Gulletta;Francesco Maggi;Y. Mika;G. Chierchia;C. Pappone - 通讯作者:
C. Pappone
A New Approach to Counterexamples to L1 Estimates: Korn’s Inequality, Geometric Rigidity, and Regularity for Gradients of Separately Convex Functions
- DOI:
10.1007/s00205-004-0350-5 - 发表时间:
2004-12-03 - 期刊:
- 影响因子:2.400
- 作者:
Sergio Conti;Daniel Faraco;Francesco Maggi - 通讯作者:
Francesco Maggi
A remark on Serrin’s Theorem
- DOI:
10.1007/s00030-006-4018-8 - 发表时间:
2006-12-01 - 期刊:
- 影响因子:1.200
- 作者:
Nicola Fusco;Michele Gori;Francesco Maggi - 通讯作者:
Francesco Maggi
Rigidity and large volume residues in exterior isoperimetry for convex sets
凸集外等周问题中的刚性和大体积残差
- DOI:
10.1016/j.aim.2024.109833 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:1.500
- 作者:
Nicola Fusco;Francesco Maggi;Massimiliano Morini;Michael Novack - 通讯作者:
Michael Novack
Francesco Maggi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesco Maggi', 18)}}的其他基金
Rigidity, Stability, Regularity, and Resolution Theorems in the Geometric Calculus of Variations
几何变分演算中的刚性、稳定性、正则性和解析定理
- 批准号:
2247544 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: New Challenges in Geometric Measure Theory
FRG:协作研究:几何测度理论的新挑战
- 批准号:
1854344 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RTG: Analysis of Partial Differential Equations
RTG:偏微分方程分析
- 批准号:
1840314 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Quantitative Analysis of Rigidity Theorems and Geometric Inequalities
刚性定理和几何不等式的定量分析
- 批准号:
1565354 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Vectorial and geometric problems in the calculus of variations
FRG:协作研究:变分法中的矢量和几何问题
- 批准号:
1361122 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Regularity and stability results in variational problems
规律性和稳定性导致变分问题
- 批准号:
1262411 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Stability, regularity and symmetry issues in geometric variational problems
几何变分问题中的稳定性、正则性和对称性问题
- 批准号:
1265910 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似海外基金
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:
2303624 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
- 批准号:
DE230100415 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Discovery Early Career Researcher Award
Stability in Geometric Variational Problems
几何变分问题的稳定性
- 批准号:
2304432 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
- 批准号:
2143124 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2020-06826 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
- 批准号:
2202343 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2020-06826 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Fine Structure of the Singular Set in Some Geometric Variational Problems
职业:一些几何变分问题中奇异集的精细结构
- 批准号:
2044954 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Regularity and Singularity Issues in Geometric Variational Problems
几何变分问题中的正则性和奇异性问题
- 批准号:
2055686 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
- 批准号:
2105460 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant