An Optoelectronics Device to Write-In and Read-Out Activity in Brain Circuits

用于写入和读出脑电路活动的光电装置

基本信息

  • 批准号:
    1264816
  • 负责人:
  • 金额:
    $ 31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

1264816Nurmikko, ArtoThe proposed research aims to contribute to the emerging field of neurotechnology by providing a new class of brain "write-in"/ "read-out" devices with unique attributes for bidirectional communication with neural circuits. The project aims to have an impact on both basic neuroscience while providing an important technology piece to future prospects for treating severely neurologically impaired individuals via electronic communications with brain circuits. This is a development project that lies at the very intersection of biomedical engineering and health sciences. More specifically, its aim is to create a new generation of devices that enables the combination of spatially and temporally specific stimulation of and recording from brain circuits in vivo mobile animal models, to advance the understanding of brain function at a fundamental level on one hand, while extrapolating squarely at possible applications e.g. to cases of neurological injury on the other. Extracting information about functional connectivity and performance of neural circuits by electrical recording by arrays of sensing microelectrodes is a well-established and powerful technique. For example, by acquiring resolution at a single neuron level from cortical circuits by implanted multielectrode arrays with real-time decoding the intention of a brain to execute motor action has recently enabled a human tetraplegic patient, with neural signal pathways from the brain to spinal cord inoperative, to control a robotic arm and hand by "thought". Supported further by several powerful demonstrations in non-human primates of brain control, a grand challenge to future neural prostheses is to "close-the-loop" for cortical control of assistive devices, for instance by providing a proxy by brain stimulation for lost sensory capability such as touch. Stimulation by electrical means has been traditionally used to excite the brain across multiple spatial scales for both research and has today specific therapeutic use. Importantly, however, the ability to specifically access well-targeted neural circuits for both excitation and inhibition has been now opened by techniques of "optogenetics", a pioneering new approach in basic and applied brain science and neurotechnology. The optical method offers a much more direct and less ambiguous stimulation of brain circuits to inform brain circuits. To reach this goal, a multielement biomedical implant device is proposed where up to 100 microscale elements are integrally arrayed for dual use - in simultaneously delivering light to and electrically reading out neural circuit dynamics ("100 points of light"). Meeting both fundamental physical and practical physiological challenges, a specific class of so-called wide bandgap crystalline semiconductors is exploited - which have the unusual combinatorial attributes of optical transparency and high electrical conductivity. The proposed device-driven research program leverages directly from expertise in the PIs laboratory where work on development of new neural recording methods (such as by wireless implants) intersects with other research strands where wide-bandgap semiconductors are studied and microfabricated to different types of light-emitting devices. In culmination of the research, the new optical stimulation/electrical read-out capability will be tested and employed in vivo in mobile animal models for fundamental brain science and neurotechnology development purposes.
1264816Nurmikko,Arto 拟议的研究旨在通过提供一种具有与神经回路双向通信的独特属性的新型大脑“写入”/“读出”设备,为新兴的神经技术领域做出贡献。 该项目旨在对基础神经科学产生影响,同时为未来通过与脑电路的电子通信治疗严重神经损伤的个体提供重要的技术。这是一个处于生物医学工程和健康科学交叉点的开发项目。更具体地说,其目标是创建新一代设备,能够将空间和时间上的特定刺激与活体移动动物模型中的脑回路记录相结合,一方面从根本上促进对脑功能的理解,同时直接推断可能的应用,例如:另一方面是神经损伤的情况。通过传感微电极阵列的电记录来提取有关神经回路功能连接和性能的信息是一项成熟且强大的技术。例如,通过植入多电极阵列并实时解码大脑执行运动动作的意图,从皮层电路获取单个神经元水平的分辨率,最近使从大脑到脊髓的神经信号通路不起作用的人类四肢瘫痪患者能够通过“思想”控制机械臂和手。在非人类灵长类动物大脑控制方面的一些强有力的演示的进一步支持下,未来神经假体面临的巨大挑战是对辅助设备的皮层控制进行“闭环”,例如通过大脑刺激为失去的感觉能力(如触觉)提供代理。 电刺激传统上用于在多个空间尺度上兴奋大脑以进行研究,并且如今具有特定的治疗用途。然而,重要的是,“光遗传学”技术现已开启了专门访问目标明确的神经回路以进行兴奋和抑制的能力,“光遗传学”是基础和应用脑科学和神经技术领域的一种开创性新方法。 光学方法提供了更直接、更明确的大脑回路刺激,以告知大脑回路。 为了实现这一目标,提出了一种多元件生物医学植入装置,其中集成排列了多达 100 个微型元件,用于双重用途 - 同时向神经回路动态传输光并以电方式读出神经回路动态(“100 个光点”)。为了满足基本的物理和实际的生理挑战,开发了一类特定的宽带隙晶体半导体,它具有光学透明性和高导电性的不寻常的组合属性。拟议的设备驱动研究计划直接利用 PI 实验室的专业知识,该实验室致力于开发新的神经记录方法(例如通过无线植入)与其他研究领域交叉,其中研究宽带隙半导体并将其微加工成不同类型的发光设备。研究的最终阶段,新的光学刺激/电读出能力将在移动动物模型中进行体内测试和应用,以用于基础脑科学和神经技术的开发目的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arto Nurmikko其他文献

Patterned electrical brain stimulation by a wireless network of implantable microdevices
通过植入式微设备无线网络进行有图案的大脑电刺激
  • DOI:
    10.1038/s41467-024-54542-1
  • 发表时间:
    2024-11-21
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Ah-Hyoung Lee;Jihun Lee;Vincent Leung;Lawrence Larson;Arto Nurmikko
  • 通讯作者:
    Arto Nurmikko

Arto Nurmikko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arto Nurmikko', 18)}}的其他基金

Collaborative Research: Large-Scale Wireless RF Networks of Microchip Sensors
合作研究:微芯片传感器的大规模无线射频网络
  • 批准号:
    2322600
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Bidirectional Wireless Optoelectronic Device for Interfacing Brain Circuits
用于连接大脑电路的双向无线光电装置
  • 批准号:
    1402803
  • 财政年份:
    2014
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Red-Green-Blue Colloidal Quantum Dots for Full Spectrum Microlasers
用于全光谱微型激光器的红-绿-蓝胶体量子点
  • 批准号:
    1128331
  • 财政年份:
    2011
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
EFRI-BSBA Integration of Dynamic Sensing and Actuating of Neural Microcircuits
EFRI-BSBA 动态传感与神经微电路驱动的集成
  • 批准号:
    0937848
  • 财政年份:
    2009
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Photonically Strongly Coupled Organic/Inorganic Nanocomposites for Light Emitter and Photovoltaic Applications
用于发光体和光伏应用的光子强耦合有机/无机纳米复合材料
  • 批准号:
    0725740
  • 财政年份:
    2007
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Biophotonics: Dynamical Cellular Imaging by Compact Arrays of Blue and Ultraviolet Light Emitting Diodes
生物光子学:通过蓝色和紫外发光二极管紧凑阵列进行动态细胞成像
  • 批准号:
    0423566
  • 财政年份:
    2004
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Dynamics of Ultrafast Magnetization in Magnetic Thin Films and Heterostructures
磁性薄膜和异质结构中超快磁化的动力学
  • 批准号:
    0074080
  • 财政年份:
    2000
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Vertical Cavity Blue and Ultraviolet Light Emitters
垂直腔蓝光和紫外光发射器
  • 批准号:
    0070887
  • 财政年份:
    2000
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Acquisition of an Ultrafast Laser Spectrometer/Metrology System
购置超快激光光谱仪/计量系统
  • 批准号:
    9871213
  • 财政年份:
    1998
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Research on Blue and Near Ultraviolet Diode Lasers
蓝光及近紫外二极管激光器的研究
  • 批准号:
    9726938
  • 财政年份:
    1998
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant

相似海外基金

SBIR Phase I: Development of wearable medical device to detect and treat opioid overdose.
SBIR 第一阶段:开发可穿戴医疗设备来检测和治疗阿片类药物过量。
  • 批准号:
    2335577
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Spatial representation and updating using a standing locomotion device
使用站立式运动设备进行空间表示和更新
  • 批准号:
    24K06616
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The SNIP Device
SNIP 设备
  • 批准号:
    10100439
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Collaborative R&D
A novel medical device for reducing chemotherapy-induced peripheral neuropathy in the hands
一种减少化疗引起的手部周围神经病变的新型医疗设备
  • 批准号:
    MR/Z503800/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Research Grant
SBIR Phase I: Novel Self-Closing, Transcatheter, Edge-to-Edge Repair Device to Percutaneously Treat Tricuspid Valve Regurgitation Using Jugular or Femoral Vein Access
SBIR 第一阶段:新型自闭合、经导管、边对边修复装置,利用颈静脉或股静脉通路经皮治疗三尖瓣反流
  • 批准号:
    2322197
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of a semi-autonomous feedback device to enable manual ventilation
I-Corps:半自主反馈设备的翻译潜力,以实现手动通气
  • 批准号:
    2420392
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
SBIR Phase I: A Cyber Assured Space Internet Device
SBIR 第一阶段:网络安全空间互联网设备
  • 批准号:
    2327618
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
  • 批准号:
    24K17404
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
TWINNING: Scalable technologies for creating virtual patient twin populations to accelerate in-silico enabled medical device innovation.
双胞胎:用于创建虚拟患者双胞胎群体的可扩展技术,以加速计算机模拟医疗设备创新。
  • 批准号:
    10103504
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Collaborative R&D
Dynamic optimization and experimental validation of a self-powered wrist-worn wearable device
自供电腕戴式可穿戴设备的动态优化与实验验证
  • 批准号:
    24K17226
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了