Dynamics of Ultrafast Magnetization in Magnetic Thin Films and Heterostructures
磁性薄膜和异质结构中超快磁化的动力学
基本信息
- 批准号:0074080
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-11-01 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Focused Research Group project involves two faculty members and several industrial collaborators who will study ultrafast, spin dependent processes that reflect nonequilibrium magnetization dynamics in ferromagnetic thin films and heterostructures on a picosecond time scale and below. A core question relates to the ultimate "speed limits" of magnetization reversal, which will be approached experimentally by employing all-optical, ultrashort pulse laser techniques. Unlike conventional approaches, which use pulsed magnetic fields to study magnetization switching in storage media, the physics in this research focuses on selective optical excitations of spins within the ordered magnetic medium, so as to modulate the exchange interaction and related electronic correlations by light in an nonthermal manner. In addition to studying optically activated magnetoelectronic processes in laterally uniform magnetic multilayers and exchange biased bi- and multilayers, the project includes the study the dynamics of collective micromagnetic effects in high density planar arrays where the individual submicron magnetic particles are coupled via dipolar (or possibly exchange bias) forces. Thin films of conventional transition metals (Co, NiFe) form the starting materials base for the project work, but a significant component of the research emphasizes selected transition metal oxides, most notably the half metallic ferromagnet CrO2. The research involves students and postdocs in cutting-edge fundamental research that has immediate relevance to current technology. The training prepares student for a variety of careers in academe, industry or government.%%%The slowest part of a typical computer is the magnetic hard drive. While there are several steps involved in storing and retrieving data from the thin film disk medium, the process of encoding information into magnetically aligned atoms is reaching its practical limits of speed. In this project work we aim to use ultrashort laser pulses to influence the disk material's magnetic properties and to achieve the reversing the magnetic alignment of groups of atoms in as little as a few trillionth of a second-approximately a hundred times faster than the speed of the process in today's disk drives. The all-optical technique allows the team to investigate the fundamental interactions involved in such fast magnetic switching, and it may lead to extremely fast data storage devices in the future. One specific approach focuses on aiming the laser pulses at a sandwich of two magnetically coupled thin film magnetic films, whose collective interaction determines the overall magnetic properties of the bilayer which is efficient in resisting an externally applied magnetic field. By selectively absorbing the laser radiation at the interface, only a few atomic layers thick, the magnetic coupling between the two materials is abruptly interrupted, freeing one of the layers (the 'free' ferromagnet) to be rapidly reversed by an oppositely-directed static magnetic field, applied from the outside. While the concept could some day be used in fast data storage, the team will be using it mostly to study the basic processes of "flipping ultrasmall compass needles" at unprecedented speeds. Many physicists have studied the reversal of a single atom's magnetic moment, but the collective process of flipping the moments of many thousands of atoms at once is not well understood at a fundamental level. The research involves students and postdocs in cutting-edge fundamental research that has immediate relevance to current technology. The training prepares student for a variety of careers in academe, industry or government
这个重点研究小组项目涉及两名教员和几名工业合作者,他们将研究在皮秒及以下时间尺度上反映铁磁薄膜和异质结构中非平衡磁化动力学的超快、自旋相关过程。一个核心问题涉及到磁化逆转的最终“速度限制”,这将通过采用全光、超短脉冲激光技术在实验中得到解决。与传统方法利用脉冲磁场研究存储介质中的磁化开关不同,本研究的物理学重点是研究有序磁介质中自旋的选择性光激发,从而通过光以非热的方式调制交换相互作用和相关的电子相关。除了研究横向均匀磁性多层和交换偏置双层和多层中的光激活磁电子过程外,该项目还包括研究高密度平面阵列中集体微磁效应的动力学,其中单个亚微米磁性粒子通过偶极(或可能的交换偏置)力耦合。传统过渡金属(Co, NiFe)薄膜构成了项目工作的起始材料基础,但研究的一个重要组成部分强调选择过渡金属氧化物,最值得注意的是半金属铁磁体CrO2。该研究涉及与当前技术直接相关的前沿基础研究的学生和博士后。该培训为学生在学术界、工业界或政府的各种职业生涯做好准备。典型计算机中最慢的部分是磁性硬盘驱动器。虽然从薄膜磁盘介质中存储和检索数据需要几个步骤,但将信息编码为磁排列原子的过程正在达到其实际速度极限。在这个项目中,我们的目标是使用超短激光脉冲来影响磁盘材料的磁性,并在短短万亿分之一秒内实现原子团的磁性排列逆转——大约比今天磁盘驱动器的速度快100倍。全光技术使该团队能够研究这种快速磁开关中涉及的基本相互作用,并可能在未来导致极快的数据存储设备。一种具体的方法侧重于将激光脉冲瞄准两个磁耦合薄膜的夹层,其集体相互作用决定了双层的整体磁性能,从而有效地抵抗外部施加的磁场。通过在只有几个原子层厚的界面上选择性地吸收激光辐射,两种材料之间的磁耦合被突然中断,释放出其中一层(“自由”铁磁体),通过从外部施加的相反方向的静态磁场迅速逆转。虽然这个概念有一天可以用于快速数据存储,但该团队将主要使用它来研究以前所未有的速度“翻转超小型指南针”的基本过程。许多物理学家已经研究了单个原子磁矩的反转,但是同时翻转数千个原子的磁矩的集体过程在基本层面上还没有得到很好的理解。该研究涉及与当前技术直接相关的前沿基础研究的学生和博士后。该培训为学生在学术界、工业界或政府的各种职业生涯做好准备
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arto Nurmikko其他文献
Patterned electrical brain stimulation by a wireless network of implantable microdevices
通过植入式微设备无线网络进行有图案的大脑电刺激
- DOI:
10.1038/s41467-024-54542-1 - 发表时间:
2024-11-21 - 期刊:
- 影响因子:15.700
- 作者:
Ah-Hyoung Lee;Jihun Lee;Vincent Leung;Lawrence Larson;Arto Nurmikko - 通讯作者:
Arto Nurmikko
Arto Nurmikko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arto Nurmikko', 18)}}的其他基金
Collaborative Research: Large-Scale Wireless RF Networks of Microchip Sensors
合作研究:微芯片传感器的大规模无线射频网络
- 批准号:
2322600 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Bidirectional Wireless Optoelectronic Device for Interfacing Brain Circuits
用于连接大脑电路的双向无线光电装置
- 批准号:
1402803 - 财政年份:2014
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
An Optoelectronics Device to Write-In and Read-Out Activity in Brain Circuits
用于写入和读出脑电路活动的光电装置
- 批准号:
1264816 - 财政年份:2013
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Red-Green-Blue Colloidal Quantum Dots for Full Spectrum Microlasers
用于全光谱微型激光器的红-绿-蓝胶体量子点
- 批准号:
1128331 - 财政年份:2011
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
EFRI-BSBA Integration of Dynamic Sensing and Actuating of Neural Microcircuits
EFRI-BSBA 动态传感与神经微电路驱动的集成
- 批准号:
0937848 - 财政年份:2009
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Photonically Strongly Coupled Organic/Inorganic Nanocomposites for Light Emitter and Photovoltaic Applications
用于发光体和光伏应用的光子强耦合有机/无机纳米复合材料
- 批准号:
0725740 - 财政年份:2007
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Biophotonics: Dynamical Cellular Imaging by Compact Arrays of Blue and Ultraviolet Light Emitting Diodes
生物光子学:通过蓝色和紫外发光二极管紧凑阵列进行动态细胞成像
- 批准号:
0423566 - 财政年份:2004
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Vertical Cavity Blue and Ultraviolet Light Emitters
垂直腔蓝光和紫外光发射器
- 批准号:
0070887 - 财政年份:2000
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Acquisition of an Ultrafast Laser Spectrometer/Metrology System
购置超快激光光谱仪/计量系统
- 批准号:
9871213 - 财政年份:1998
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Research on Blue and Near Ultraviolet Diode Lasers
蓝光及近紫外二极管激光器的研究
- 批准号:
9726938 - 财政年份:1998
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
相似国自然基金
基于Ultrafast-VPCR技术的半夏药材及其成药快速基因检测体系的建立以及应用
- 批准号:81973434
- 批准年份:2019
- 资助金额:54.0 万元
- 项目类别:面上项目
相似海外基金
Ultrafast magnetization dynamics at high temperatures
高温下超快磁化动力学
- 批准号:
560174-2021 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Ultrafast magnetization dynamics at high temperatures
高温下超快磁化动力学
- 批准号:
560174-2021 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Ultrafast magnetization dynamics in perovskite films and heterostructures
钙钛矿薄膜和异质结构中的超快磁化动力学
- 批准号:
399572199 - 财政年份:2018
- 资助金额:
$ 48万 - 项目类别:
Research Grants
Ultrafast magnetization dynamics and spin transport in magnetic oxide heterostructures (A09)
磁性氧化物异质结构中的超快磁化动力学和自旋输运 (A09)
- 批准号:
397775129 - 财政年份:2018
- 资助金额:
$ 48万 - 项目类别:
CRC/Transregios
CAREER: Spin Plasmonics for Ultrafast All-Optical Manipulation of Magnetization in Hybrid Metal-Ferromagnet Structures
职业:用于混合金属-铁磁体结构中磁化的超快全光学操纵的自旋等离子体
- 批准号:
1654192 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
X-ray-induced spin-polarized states and ultrafast magnetization dynamics
X射线引起的自旋极化态和超快磁化动力学
- 批准号:
17H02823 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Ultrafast acoustics for magnetization modulation (B06)
用于磁化调制的超快声学 (B06)
- 批准号:
269933596 - 财政年份:2015
- 资助金额:
$ 48万 - 项目类别:
CRC/Transregios
Modeling of Ultrafast Magnetization Dynamics at High temperatures
高温下超快磁化动力学建模
- 批准号:
1404542 - 财政年份:2014
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Ultrafast manipulation of magnetization with optical or lattice-wave excitations and its applications
光学或晶格波激励磁化的超快操控及其应用
- 批准号:
22226002 - 财政年份:2010
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Optically induced ultrafast magnetization dynamics in the vicinity of phase transitions in nanostructures
纳米结构相变附近的光致超快磁化动力学
- 批准号:
5430784 - 财政年份:2004
- 资助金额:
$ 48万 - 项目类别:
Priority Programmes