Bidirectional Wireless Optoelectronic Device for Interfacing Brain Circuits

用于连接大脑电路的双向无线光电装置

基本信息

  • 批准号:
    1402803
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-15 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

Proposal CBET - 1402803 "Bidirectional Wireless Optoelectronic Device for Interfacing Brain Circuits"The proposed research aims to contribute to the field of neurotechnology by providing a new class of brain "write-in"/ "read-out" devices with unique attributes for bidirectional communication with neural circuits. By developing the new technology for the broader scientific community, the project aims to have an impact on basic neuroscience, especially for primates, while providing an important piece of technology to development of future prospects for treating severely neurologically impaired individuals via direct electronic communications with brain circuits. The proposed technology is based by innovative use of special types of optoelectronic materials combined with advanced microdevice design and fabrication from microcircuits to mobile microsystems. The PI seeks to develop a compact, combinatorial stimulating/recording device system platform for accessing the brain circuits at spatial and temporal specificity not possible before. Further, the entirely wireless, high speed bidirectional electronic communication link to brain circuits will enable testing the new capability in in-vivo mobile animal models for fundamental brain science and neurotechnology development purposes.Technical Description: The goal of this neuroengineering project is to enable access to a crucial piece in our understanding of the brain, namely mapping of targeted brain circuits to advance fundamental understanding of how units composed of hundreds or thousands of individual neural cells act as a dynamical system while computing e.g. a primate's planning of such motor action as reaching and grasping coupled to perception and other sensory modalities. While sub-centimeter imaging of the functioning brain can be visualized by functional magnetic resonance equipment, we currently lack the full ability to track network dynamics at the spatial and temporal level which defines the most meaningful, yet simplest truly functional computational circuit. The term "mesoscale" has been recently introduced to designate such basic modular constructs which might contain hundreds to thousands of interacting neural cells. The PI proposes to engineer a powerful wireless neurotechnology platform to create a real-time link between targeted brain microcircuits for animal models including non-human primates. The engineering core of the system is a compact, lightweight photonic-microelectronic device, implanted and head-mounted on a subject, with high-speed radio-frequency link to external information processing systems. In summary the aim is to implement a broadband bidirectional wireless neural interface for targeted brain areas of interest. Bidirectionality implies simultaneous neural recording and neural stimulation. The proposed high-speed wireless device technology accomplishes this task for simultaneous recording and stimulation with spatial and temporal resolution to single neuron-level resolution. Having means for precisely controlled spatio-temporally patterned neurostimulation capability of neural circuits enables the tracking and identification of the dynamical trajectories of the associated perturbed brain states by precisely controlled stimulus (excitation and/or inhibition). The recorded neural signals capture all of their relevant temporal information across the multiple probe points, namely as action potentials (spikes), high-frequency oscillations field potentials (LFP), and the underlying low-frequency brain rhythms. The project is a fusion of sophisticated microelectronics and computational neuroscience. Embedded in the research are multiple disciplinary components: photonics, microbiology (of optogenetics), material science and nanofabrication processing, ultralow-power integrated circuits design, high speed microwave telemetry, and computer engineering hardware/software for neural signal processing..
建议CBET-1402803“用于连接大脑电路的双向无线光电设备”拟议的研究旨在通过提供一种具有与神经电路双向通信的独特属性的新型大脑“写入”/“读出”设备,为神经技术领域做出贡献。通过为更广泛的科学界开发这项新技术,该项目旨在对基础神经科学产生影响,特别是对灵长类动物,同时为开发未来通过与大脑电路直接电子通信治疗严重神经受损个人的前景提供一项重要技术。这项拟议技术的基础是创新地使用特殊类型的光电子材料,并结合从微电路到移动微系统的先进微器件设计和制造。PI寻求开发一种紧凑的组合刺激/记录设备系统平台,用于以以前不可能实现的空间和时间特异性访问大脑电路。此外,与大脑回路的完全无线、高速双向电子通信链接将使我们能够在体内移动动物模型中测试新的能力,以用于基础脑科学和神经技术开发目的。技术描述:该神经工程项目的目标是使我们能够访问我们对大脑理解的关键部分,即目标大脑回路图,以促进对由成百上千个单独的神经细胞组成的单元如何在计算时作为动力系统的基本理解,例如灵长类动物对运动动作的规划,例如伸手和抓住与感知和其他感官形式相结合。虽然功能性磁共振设备可以对正常运作的大脑进行亚厘米成像,但我们目前缺乏在空间和时间层面跟踪网络动态的完整能力,这定义了最有意义、但也是最简单的真正功能计算电路。术语“中尺度”最近被引入来表示这种可能包含成百上千个相互作用的神经细胞的基本模块结构。PI建议设计一个强大的无线神经技术平台,为包括非人类灵长类动物在内的动物模型创建目标大脑微电路之间的实时链接。该系统的工程核心是一种紧凑、轻便的光子-微电子设备,植入受试者身上并戴在头上,带有与外部信息处理系统的高速射频链接。总而言之,其目标是为目标大脑感兴趣的区域实施宽带双向无线神经接口。双向意味着同时进行神经记录和神经刺激。提出的高速无线设备技术可以完成这一任务,以空间和时间分辨率到单个神经元级别的分辨率同时记录和刺激。具有神经回路的精确控制的时空模式神经刺激能力的装置,使得能够通过精确控制的刺激(兴奋和/或抑制)来跟踪和识别相关的扰动大脑状态的动态轨迹。记录的神经信号捕获了多个探测点上所有相关的时间信息,即动作电位(棘波)、高频振荡场电位(LFP)和潜在的低频大脑节律。该项目融合了尖端微电子学和计算神经科学。这项研究涉及多个学科领域:光子学、微生物学(光遗传学)、材料科学和纳米加工、超低功耗集成电路设计、高速微波遥测以及用于神经信号处理的计算机工程硬件/软件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arto Nurmikko其他文献

Patterned electrical brain stimulation by a wireless network of implantable microdevices
通过植入式微设备无线网络进行有图案的大脑电刺激
  • DOI:
    10.1038/s41467-024-54542-1
  • 发表时间:
    2024-11-21
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Ah-Hyoung Lee;Jihun Lee;Vincent Leung;Lawrence Larson;Arto Nurmikko
  • 通讯作者:
    Arto Nurmikko

Arto Nurmikko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arto Nurmikko', 18)}}的其他基金

Collaborative Research: Large-Scale Wireless RF Networks of Microchip Sensors
合作研究:微芯片传感器的大规模无线射频网络
  • 批准号:
    2322600
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
An Optoelectronics Device to Write-In and Read-Out Activity in Brain Circuits
用于写入和读出脑电路活动的光电装置
  • 批准号:
    1264816
  • 财政年份:
    2013
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Red-Green-Blue Colloidal Quantum Dots for Full Spectrum Microlasers
用于全光谱微型激光器的红-绿-蓝胶体量子点
  • 批准号:
    1128331
  • 财政年份:
    2011
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
EFRI-BSBA Integration of Dynamic Sensing and Actuating of Neural Microcircuits
EFRI-BSBA 动态传感与神经微电路驱动的集成
  • 批准号:
    0937848
  • 财政年份:
    2009
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Photonically Strongly Coupled Organic/Inorganic Nanocomposites for Light Emitter and Photovoltaic Applications
用于发光体和光伏应用的光子强耦合有机/无机纳米复合材料
  • 批准号:
    0725740
  • 财政年份:
    2007
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Biophotonics: Dynamical Cellular Imaging by Compact Arrays of Blue and Ultraviolet Light Emitting Diodes
生物光子学:通过蓝色和紫外发光二极管紧凑阵列进行动态细胞成像
  • 批准号:
    0423566
  • 财政年份:
    2004
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Dynamics of Ultrafast Magnetization in Magnetic Thin Films and Heterostructures
磁性薄膜和异质结构中超快磁化的动力学
  • 批准号:
    0074080
  • 财政年份:
    2000
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Vertical Cavity Blue and Ultraviolet Light Emitters
垂直腔蓝光和紫外光发射器
  • 批准号:
    0070887
  • 财政年份:
    2000
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Acquisition of an Ultrafast Laser Spectrometer/Metrology System
购置超快激光光谱仪/计量系统
  • 批准号:
    9871213
  • 财政年份:
    1998
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Research on Blue and Near Ultraviolet Diode Lasers
蓝光及近紫外二极管激光器的研究
  • 批准号:
    9726938
  • 财政年份:
    1998
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Wireless Mesh Network的分布式操作系统研究
  • 批准号:
    60673142
  • 批准年份:
    2006
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

PFI-TT: A Novel Wireless Sensor for Continuous Monitoring of Patients with Chronic Diseases
PFI-TT:一种用于持续监测慢性病患者的新型无线传感器
  • 批准号:
    2345803
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Collaborative Research: IRES Track I: Wireless Federated Fog Computing for Remote Industry 4.0 Applications
合作研究:IRES Track I:用于远程工业 4.0 应用的无线联合雾计算
  • 批准号:
    2417064
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: Large-Scale Wireless RF Networks of Microchip Sensors
合作研究:微芯片传感器的大规模无线射频网络
  • 批准号:
    2322601
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Integrated Sensing and Communication for 6G Wireless Networks
6G 无线网络的集成传感和通信
  • 批准号:
    DP240101019
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Projects
Optical and wireless sensors networks for 6G scenarios - -OWIN6G
6G场景的光学和无线传感器网络 - -OWIN6G
  • 批准号:
    EP/Y034538/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
Wireless Integrated Circuits for the Era of 6G: System-in-a-Package
6G时代的无线集成电路:系统级封装
  • 批准号:
    FT230100104
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    ARC Future Fellowships
Seamless integration of efficient 6G wireless technologies for communication and Sensing
用于通信和传感的高效 6G 无线技术的无缝集成
  • 批准号:
    10102305
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    EU-Funded
ERI: SDR Beyond Radio: Enabling Experimental Research in Multi-Node Optical Wireless Networks via Software Defined Radio Tools and Techniques
ERI:超越无线电的 SDR:通过软件定义无线电工具和技术实现多节点光无线网络的实验研究
  • 批准号:
    2347514
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
SBIR Phase I: Intelligent Repeaters for Pervasive Millimeter-Wave Wireless Broadband Connectivity
SBIR 第一阶段:用于普及毫米波无线宽带连接的智能中继器
  • 批准号:
    2335455
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
CAREER: Towards 3D Omnidirectional and Efficient Wireless Power Transfer with Controlled 2D Near-Field Coil Array
职业:利用受控 2D 近场线圈阵列实现 3D 全向高效无线功率传输
  • 批准号:
    2338697
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了