Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
基本信息
- 批准号:1265249
- 负责人:
- 金额:$ 54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this proposal is to continue the PI's research on the development of various aspects of harmonic analysis and partial differential equations. The main focus of the PI's research will be the study of soliton resolution and blow-up properties of solutions to the energy critical wave equations and related models, the study of the global behavior of solutions to dispersive geometric flows, such as wave maps and Schrodinger maps, the study of periodic homogenization, the study of uniqueness and reconstruction in local inverse problems, the study of elliptic boundary value problems under minimal regularity assumptions and the study of quantitative unique continuation arising from localization problems in mathematical physics. This is a very ambitious and innovative program of research, which should develop new ideas and tools to treat important problems in the subjects mentioned above, which will have lasting consequences for the developments of these subjects and which builds on the PI's previous research accomplishments.Many of the topics in the PI's research have their origins in problems coming from physics, engineering and medical imaging. In addition, the problems to be researched bring together in their study tools from different areas of mathematical analysis and geometry, further developing those areas. It is hoped that the synergy thus created will enrich all the fields involved. The research developed in the proposal will be the basis for graduate course, mini-courses and lectures by the PI. It will be disseminated widely through the publication of research papers, survey articles and monographs, through arXiv, a freely available electronic server of preprints, where the PI posts most of his preprints and through the PI's web page. In addition, this proposal will lead to topics of research for the PI's graduate students. The PI works actively to increase the participation in research of underrepresented groups. In this connection, the PI is very proud of his record of training female mathematicians as PhD students and postdocs. The PI hopes that the research in this proposal and its broad dissemination will lead to an even larger number of female graduate students and postdocs to be trained by the PI.
这个提议的目的是继续PI在调和分析和偏微分方程的各个方面的发展的研究。PI的主要研究重点将是研究能量临界波方程和相关模型的解的孤子分辨率和爆破性质,研究色散几何流的解的全局行为,如波映射和薛定谔映射,研究周期均匀化,研究局部逆问题的唯一性和重建,在最小正则性假设下的椭圆边值问题的研究和数学物理中局部化问题引起的定量唯一延拓的研究。这是一个非常雄心勃勃的创新研究计划,它应该开发新的想法和工具来处理上述主题中的重要问题,这将对这些主题的发展产生持久的影响,并建立在PI以前的研究成果之上。PI研究中的许多主题都起源于来自物理学,工程学和医学成像的问题。此外,要研究的问题汇集在他们的学习工具从数学分析和几何的不同领域,进一步发展这些领域。希望由此产生的协同作用将丰富所有有关领域。在提案中开发的研究将是研究生课程,迷你课程和PI讲座的基础。将通过出版研究论文、调查文章和专著,通过arXiv(一个可免费获得的预印本电子服务器,主要研究者将其大部分预印本张贴在该服务器上)以及通过主要研究者的网页,广泛传播该报告。此外,这项建议将导致PI的研究生的研究课题。公共研究所积极开展工作,增加代表性不足群体参与研究的机会。在这方面,PI对他将女性数学家培养为博士生和博士后的记录感到非常自豪。PI希望,对这一建议的研究及其广泛传播将导致更多的女研究生和博士后接受PI的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Kenig其他文献
A note on the critical set of harmonic functions near the boundary
关于边界附近调和函数临界集的注记
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Carlos Kenig;Zihui Zhao - 通讯作者:
Zihui Zhao
On classification of non-radiative solutions for various energy-critical wave equations
各种能量临界波动方程非辐射解的分类
- DOI:
10.1016/j.aim.2023.109337 - 发表时间:
2023 - 期刊:
- 影响因子:1.7
- 作者:
Charles Collot;Thomas Duyckaerts;Carlos Kenig;F. Merle - 通讯作者:
F. Merle
Correction to: Boundary Unique Continuation on $$C^1$$ -Dini Domains and the Size of the Singular Set
- DOI:
10.1007/s00205-022-01788-y - 发表时间:
2022-05-16 - 期刊:
- 影响因子:2.400
- 作者:
Carlos Kenig;Zihui Zhao - 通讯作者:
Zihui Zhao
Carlos Kenig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Kenig', 18)}}的其他基金
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
2153794 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Challenges in the Derivation and Dynamics of Quantum Systems
FRG:协作研究:量子系统推导和动力学的新挑战
- 批准号:
2052710 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
1800082 - 财政年份:2018
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Well-Posedness and Long Time Behavior of Some Nonlinear Partial Differential Equations
一些非线性偏微分方程的适定性和长时间行为
- 批准号:
1600779 - 财政年份:2016
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
- 批准号:
1463746 - 财政年份:2015
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
0968472 - 财政年份:2010
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
0456583 - 财政年份:2005
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
9988711 - 财政年份:2000
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Mathematical Sciences: Harmonic Analysis and Partial Differential Equations
数学科学:调和分析和偏微分方程
- 批准号:
9500725 - 财政年份:1995
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Mathematical Sciences: Conference on Harmonic Analysis and Partial differential Equations
数学科学:调和分析和偏微分方程会议
- 批准号:
9526185 - 财政年份:1995
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
- 批准号:
2324706 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
The Frequency Function Method in Elliptic Partial Differential Equations and Harmonic Analysis
椭圆偏微分方程与调和分析中的频率函数法
- 批准号:
2247185 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
2153794 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Research in Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程研究
- 批准号:
2154031 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
- 批准号:
2044898 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Nonlinear harmonic analysis and dispersive partial differential equations
非线性调和分析和色散偏微分方程
- 批准号:
DP200101065 - 财政年份:2020
- 资助金额:
$ 54万 - 项目类别:
Discovery Projects
Harmonic analysis: function spaces and partial differential equations
调和分析:函数空间和偏微分方程
- 批准号:
DP190100970 - 财政年份:2019
- 资助金额:
$ 54万 - 项目类别:
Discovery Projects
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
- 批准号:
RGPIN-2015-06688 - 财政年份:2019
- 资助金额:
$ 54万 - 项目类别:
Discovery Grants Program - Individual