Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
基本信息
- 批准号:1800082
- 负责人:
- 金额:$ 25.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will continue research activity on the development of various aspects of mathematical analysis which are relevant to some of the most fundamental problems in the area of harmonic analysis and partial differential equations and its applications. The project will also continue the training of graduate students and postdoctoral students to carry out research in these problems. Many of the topics to be studied have their origin in problems coming from physics and engineering. It is expected that the research proposed will have a synergistic effect between these fields and the mathematical fields of analysis and geometry.The main focus of the research will be the study of soliton resolution for the energy critical wave equation and the wave map equation, both in the presence and the absence of symmetry, and for other dispersive and dispersive-geometric models. In another direction, a study will be made of quantitative unique continuation in local settings and at infinity, including the cases of periodic and random coefficients, and their connection with homogenization theory. This is a very ambitious program of research that will have lasting consequences for the development of these areas. The principal investigator will ensure the wide dissemination of the results obtained, including their use in the development of courses, the training of graduate students and postdocs, and the exploration of the connections with other fields of science and technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将继续研究数学分析各个方面的发展,这些方面与调和分析和偏微分方程及其应用领域的一些最基本问题有关。该项目还将继续培训研究生和博士后研究生,以便对这些问题进行研究。许多要研究的主题都起源于物理学和工程学的问题。预计所提出的研究将在这些领域与分析和几何的数学领域之间产生协同效应。研究的主要重点将是研究在存在和不存在对称性的情况下能量临界波动方程和波图方程以及其他色散和色散几何模型的孤子分辨率。在另一个方向上,将研究在局部设置和无穷远处的定量唯一连续性,包括周期和随机系数的情况,以及它们与均匀化理论的联系。这是一个非常雄心勃勃的研究计划,将对这些领域的发展产生持久的影响。主要研究者将确保所获得的结果的广泛传播,包括它们在课程开发中的使用,研究生和博士后的培训,以及与其他科学和技术领域的联系的探索。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Landis’ conjecture in the plane when the potential has an exponentially decaying negative part
- DOI:10.1090/spmj/1600
- 发表时间:2018-08
- 期刊:
- 影响因子:0
- 作者:Blair Davey;C. Kenig;Jenn-Nan Wang
- 通讯作者:Blair Davey;C. Kenig;Jenn-Nan Wang
Asymptotic simplification for solutions of the energy critical nonlinear wave equation
能量临界非线性波动方程解的渐近简化
- DOI:10.1063/5.0033220
- 发表时间:2021
- 期刊:
- 影响因子:1.3
- 作者:Kenig, Carlos E.
- 通讯作者:Kenig, Carlos E.
Propagation of Smallness in Elliptic Periodic Homogenization
椭圆周期均匀化中小值的传播
- DOI:10.1137/20m1312770
- 发表时间:2021
- 期刊:
- 影响因子:2
- 作者:Kenig, Carlos;Zhu, Jiuyi
- 通讯作者:Zhu, Jiuyi
The method of energy channels for nonlinear wave equations
- DOI:10.3934/dcds.2019240
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:C. Kenig
- 通讯作者:C. Kenig
Uniqueness properties of solutions to the Benjamin-Ono equation and related models
本杰明-小野方程及相关模型解的唯一性
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:C.Kenig, G.Ponce and
- 通讯作者:C.Kenig, G.Ponce and
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Kenig其他文献
A note on the critical set of harmonic functions near the boundary
关于边界附近调和函数临界集的注记
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Carlos Kenig;Zihui Zhao - 通讯作者:
Zihui Zhao
On classification of non-radiative solutions for various energy-critical wave equations
各种能量临界波动方程非辐射解的分类
- DOI:
10.1016/j.aim.2023.109337 - 发表时间:
2023 - 期刊:
- 影响因子:1.7
- 作者:
Charles Collot;Thomas Duyckaerts;Carlos Kenig;F. Merle - 通讯作者:
F. Merle
Correction to: Boundary Unique Continuation on $$C^1$$ -Dini Domains and the Size of the Singular Set
- DOI:
10.1007/s00205-022-01788-y - 发表时间:
2022-05-16 - 期刊:
- 影响因子:2.400
- 作者:
Carlos Kenig;Zihui Zhao - 通讯作者:
Zihui Zhao
Carlos Kenig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Kenig', 18)}}的其他基金
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
2153794 - 财政年份:2022
- 资助金额:
$ 25.24万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Challenges in the Derivation and Dynamics of Quantum Systems
FRG:协作研究:量子系统推导和动力学的新挑战
- 批准号:
2052710 - 财政年份:2021
- 资助金额:
$ 25.24万 - 项目类别:
Standard Grant
Well-Posedness and Long Time Behavior of Some Nonlinear Partial Differential Equations
一些非线性偏微分方程的适定性和长时间行为
- 批准号:
1600779 - 财政年份:2016
- 资助金额:
$ 25.24万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
- 批准号:
1463746 - 财政年份:2015
- 资助金额:
$ 25.24万 - 项目类别:
Continuing Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
1265249 - 财政年份:2013
- 资助金额:
$ 25.24万 - 项目类别:
Continuing Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
0968472 - 财政年份:2010
- 资助金额:
$ 25.24万 - 项目类别:
Continuing Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
0456583 - 财政年份:2005
- 资助金额:
$ 25.24万 - 项目类别:
Continuing Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
9988711 - 财政年份:2000
- 资助金额:
$ 25.24万 - 项目类别:
Continuing Grant
Mathematical Sciences: Harmonic Analysis and Partial Differential Equations
数学科学:调和分析和偏微分方程
- 批准号:
9500725 - 财政年份:1995
- 资助金额:
$ 25.24万 - 项目类别:
Continuing Grant
Mathematical Sciences: Conference on Harmonic Analysis and Partial differential Equations
数学科学:调和分析和偏微分方程会议
- 批准号:
9526185 - 财政年份:1995
- 资助金额:
$ 25.24万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 25.24万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 25.24万 - 项目类别:
Standard Grant
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
- 批准号:
2324706 - 财政年份:2023
- 资助金额:
$ 25.24万 - 项目类别:
Standard Grant
The Frequency Function Method in Elliptic Partial Differential Equations and Harmonic Analysis
椭圆偏微分方程与调和分析中的频率函数法
- 批准号:
2247185 - 财政年份:2023
- 资助金额:
$ 25.24万 - 项目类别:
Standard Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
2153794 - 财政年份:2022
- 资助金额:
$ 25.24万 - 项目类别:
Standard Grant
Research in Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程研究
- 批准号:
2154031 - 财政年份:2022
- 资助金额:
$ 25.24万 - 项目类别:
Standard Grant
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
- 批准号:
2044898 - 财政年份:2021
- 资助金额:
$ 25.24万 - 项目类别:
Continuing Grant
Nonlinear harmonic analysis and dispersive partial differential equations
非线性调和分析和色散偏微分方程
- 批准号:
DP200101065 - 财政年份:2020
- 资助金额:
$ 25.24万 - 项目类别:
Discovery Projects
Harmonic analysis: function spaces and partial differential equations
调和分析:函数空间和偏微分方程
- 批准号:
DP190100970 - 财政年份:2019
- 资助金额:
$ 25.24万 - 项目类别:
Discovery Projects
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
- 批准号:
RGPIN-2015-06688 - 财政年份:2019
- 资助金额:
$ 25.24万 - 项目类别:
Discovery Grants Program - Individual