Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
基本信息
- 批准号:2153794
- 负责人:
- 金额:$ 29.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project addresses the solutions of long-standing mathematical problems dealing with non-linear propagation of waves. These problems are inspired by important areas of science and engineering, such as water waves, lasers and nonlinear optics, ferromagnetism, particle physics and general relativity. The central theme of the project is the mathematical study of a remarkable simplification for large time that occurs in such problems, as observed both computationally and experimentally. In turn, such a mathematical study improves the computational and experimental tools, thus yielding important new applications. The research that is developed by the PI, his students, postdocs and collaborators is also used as the basis for educational training at the graduate and postgraduate levels. The results obtained as part of the project are disseminated widely through the publication of research articles and monographs, and through the internet. The main focus of the project is on the study of soliton resolution for the energy critical nonlinear wave equation and the wave map equation, both in the presence and the absence of symmetries, and for other dispersive and dispersive-geometric models; the study of quantitative unique continuation in local settings and at infinity, and in the case of periodic coefficients with connections to homogenization theory. This is a research program that should have lasting consequences for the development of these subjects and which builds on the Principal Investigator's previous research accomplishments. It is hoped that the project will have a synergistic effect between the areas of science and engineering mentioned above and the mathematical fields of analysis and geometry, as well as an important educational impact through the training of future generations of researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目致力于解决长期存在的数学问题,处理波的非线性传播。这些问题的灵感来自于科学和工程的重要领域,如水波,激光和非线性光学,铁磁性,粒子物理学和广义相对论。该项目的中心主题是在计算和实验两方面观察到的,在此类问题中发生的大量时间的显着简化的数学研究。反过来,这样的数学研究改进了计算和实验工具,从而产生了重要的新应用。由PI,他的学生,博士后和合作者开发的研究也被用作研究生和研究生教育培训的基础。作为该项目一部分取得的成果通过出版研究文章和专著以及通过互联网广泛传播。 该项目的主要重点是研究能量临界非线性波动方程和波图方程的孤子分辨率,包括对称性的存在和不存在,以及其他色散和色散几何模型;研究局部设置和无穷远处的定量唯一连续性,以及与均匀化理论有关的周期系数的情况。这是一个研究计划,应该对这些主题的发展产生持久的影响,并建立在主要研究者以前的研究成果之上。希望该项目能够在上述科学和工程领域与分析和几何等数学领域之间产生协同效应,并通过培养未来的研究人员产生重要的教育影响。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Kenig其他文献
A note on the critical set of harmonic functions near the boundary
关于边界附近调和函数临界集的注记
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Carlos Kenig;Zihui Zhao - 通讯作者:
Zihui Zhao
On classification of non-radiative solutions for various energy-critical wave equations
各种能量临界波动方程非辐射解的分类
- DOI:
10.1016/j.aim.2023.109337 - 发表时间:
2023 - 期刊:
- 影响因子:1.7
- 作者:
Charles Collot;Thomas Duyckaerts;Carlos Kenig;F. Merle - 通讯作者:
F. Merle
Correction to: Boundary Unique Continuation on $$C^1$$ -Dini Domains and the Size of the Singular Set
- DOI:
10.1007/s00205-022-01788-y - 发表时间:
2022-05-16 - 期刊:
- 影响因子:2.400
- 作者:
Carlos Kenig;Zihui Zhao - 通讯作者:
Zihui Zhao
Carlos Kenig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Kenig', 18)}}的其他基金
FRG: Collaborative Research: New Challenges in the Derivation and Dynamics of Quantum Systems
FRG:协作研究:量子系统推导和动力学的新挑战
- 批准号:
2052710 - 财政年份:2021
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
1800082 - 财政年份:2018
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
Well-Posedness and Long Time Behavior of Some Nonlinear Partial Differential Equations
一些非线性偏微分方程的适定性和长时间行为
- 批准号:
1600779 - 财政年份:2016
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
- 批准号:
1463746 - 财政年份:2015
- 资助金额:
$ 29.58万 - 项目类别:
Continuing Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
1265249 - 财政年份:2013
- 资助金额:
$ 29.58万 - 项目类别:
Continuing Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
0968472 - 财政年份:2010
- 资助金额:
$ 29.58万 - 项目类别:
Continuing Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
0456583 - 财政年份:2005
- 资助金额:
$ 29.58万 - 项目类别:
Continuing Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
9988711 - 财政年份:2000
- 资助金额:
$ 29.58万 - 项目类别:
Continuing Grant
Mathematical Sciences: Harmonic Analysis and Partial Differential Equations
数学科学:调和分析和偏微分方程
- 批准号:
9500725 - 财政年份:1995
- 资助金额:
$ 29.58万 - 项目类别:
Continuing Grant
Mathematical Sciences: Conference on Harmonic Analysis and Partial differential Equations
数学科学:调和分析和偏微分方程会议
- 批准号:
9526185 - 财政年份:1995
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
- 批准号:
2324706 - 财政年份:2023
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
The Frequency Function Method in Elliptic Partial Differential Equations and Harmonic Analysis
椭圆偏微分方程与调和分析中的频率函数法
- 批准号:
2247185 - 财政年份:2023
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
Research in Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程研究
- 批准号:
2154031 - 财政年份:2022
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
- 批准号:
2044898 - 财政年份:2021
- 资助金额:
$ 29.58万 - 项目类别:
Continuing Grant
Nonlinear harmonic analysis and dispersive partial differential equations
非线性调和分析和色散偏微分方程
- 批准号:
DP200101065 - 财政年份:2020
- 资助金额:
$ 29.58万 - 项目类别:
Discovery Projects
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
- 批准号:
RGPIN-2015-06688 - 财政年份:2019
- 资助金额:
$ 29.58万 - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis: function spaces and partial differential equations
调和分析:函数空间和偏微分方程
- 批准号:
DP190100970 - 财政年份:2019
- 资助金额:
$ 29.58万 - 项目类别:
Discovery Projects
Harmonic Analysis and Dispersive Partial Differential Equations
调和分析和色散偏微分方程
- 批准号:
1900603 - 财政年份:2019
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant