New trends in mathematical fluid dynamics and ergodic number theory

数学流体动力学和遍历数论的新趋势

基本信息

  • 批准号:
    1265547
  • 负责人:
  • 金额:
    $ 20.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Many phenomena in nature are connected with deep mathematical problems and theories. As an example, one can mention the obvious fact that in many regions on the Earth the frequency of tornadoes has strongly increased. Tornadoes are special solutions of equations of fluid dynamics that have strong singularities. A big part of the mathematical efforts detailed in this proposal is connected with the general properties of solutions of equations of fluid dynamics. Several years ago D. Li and I proposed a new approach which allows us to construct solutions which have singularities that in some respects resemble tornadoes. Recently a group of researchers from Italy performed numerical studies and demonstrated solutions that fully confirmed our theory. Another part of the proposal is connected with number theory. One of the main objects in number theory is the so-called Moebius function. P.Sarnak has proposed a wide program on Mobuius functions whose aim was the analysis of statistical properties of the Moebius functions. Some progress was achieved in our joint papers with F.Cellarosi and with M. Avdeeva and Dong Li. A new feature here is the appearance of probability distributions with complex probabilities which certainly is a new phenomenon. The purpose of the proposal is to study in more detail complex probabilities, new limit theorems and find other applications to number theory.The topics in this proposal center around questions in the fields of ergodic theory and the theory of partial differential equations. In broad terms, ergodic theory is the study of the asymptotic behavior of the paths of objects in motion. This field was borne through the study of statistical mechanics, and indeed ergodic theory remains a valuable tool in this important subject of physics. Another subject in which ergodic theory has found application is in number theory, and in particular in the study of the asymptotic distribution of certain kinds of numbers. The application of ergodic theory to number theory has itself led to fascinating questions in ergodic theory. This proposal contains a collection of such questions that we will continue to study. Partial differential equations are the principal tool by which physical phenomena, such as the flow of air over the wing of an airplane, the behavior of plasmas in the body of a star, the flow of electrons through a semi-conductor, are modeled. It is a subject which is intensively studied for its own inherent interest as well as for its usefulness in applications. We propose the continuation of deep studies in the properties of the equations of fluid dynamics as we described above.
自然界中的许多现象都与深奥的数学问题和理论有关。举个例子,人们可以提到一个明显的事实,即在地球上的许多地区,龙卷风的频率大大增加了。龙卷风是具有强奇异性的流体动力学方程的特殊解。在这个建议中详述的数学努力的很大一部分与流体动力学方程解的一般性质有关。几年前,李博士和我提出了一种新的方法,它允许我们构建具有奇点的解决方案,在某些方面类似于龙卷风。最近,来自意大利的一组研究人员进行了数值研究,并展示了完全证实我们理论的解决方案。提案的另一部分与数论有关。数论的主要对象之一是所谓的莫比乌斯函数。P.Sarnak提出了一个关于莫比乌斯函数的广义程序,其目的是分析莫比乌斯函数的统计性质。我们与塞拉罗西先生、阿夫季耶娃先生和李东的联合论文取得了一些进展。这里的一个新特征是出现了具有复杂概率的概率分布,这当然是一个新现象。该提案的目的是更详细地研究复杂概率,新的极限定理,并找到数论的其他应用。本提案的主题围绕遍历理论和偏微分方程理论领域的问题。广义地说,遍历理论是研究运动中物体路径的渐近行为。这个领域是通过对统计力学的研究而产生的,事实上,遍历理论在这一重要的物理学学科中仍然是一个有价值的工具。遍历理论的另一个应用领域是数论,特别是对某些数的渐近分布的研究。遍历理论在数论中的应用本身就导致了遍历理论中引人入胜的问题。这个建议包含了一系列我们将继续研究的问题。偏微分方程是物理现象建模的主要工具,如飞机机翼上的空气流动、恒星体内等离子体的行为、电子在半导体中的流动等。这是一门因其自身固有的兴趣以及在应用中的有用性而被深入研究的学科。如上所述,我们建议继续深入研究流体动力学方程的性质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yakov Sinai其他文献

Kolmogorov-Sinai entropy
  • DOI:
    10.4249/scholarpedia.2034
  • 发表时间:
    2009-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yakov Sinai
  • 通讯作者:
    Yakov Sinai
A Theorem About Uniform Distribution

Yakov Sinai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yakov Sinai', 18)}}的其他基金

Ergodic and Statistical Phenomena in Dynamics
动力学中的遍历和统计现象
  • 批准号:
    0901235
  • 财政年份:
    2009
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Continuing Grant
Ergodic and Statistical Phenomena in Dynamics
动力学中的遍历和统计现象
  • 批准号:
    0600996
  • 财政年份:
    2006
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Continuing Grant
Ergodic and Statistical Phenomena in Dynamics
动力学中的遍历和统计现象
  • 批准号:
    0245397
  • 财政年份:
    2003
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Continuing Grant
Ergodic Phenomena in Differential Dynamics
微分动力学中的遍历现象
  • 批准号:
    0070698
  • 财政年份:
    2000
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Ergodic Phenomena in Differential Dynamics
数学科学:微分动力学中的遍历现象
  • 批准号:
    9706794
  • 财政年份:
    1997
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Prospects in Mathematics
数学科学:数学前景
  • 批准号:
    9522056
  • 财政年份:
    1996
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Ergodic Phenomena in Differential Dynamics
数学科学:微分动力学中的遍历现象
  • 批准号:
    9404437
  • 财政年份:
    1994
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Continuing Grant

相似海外基金

Use and Impact of Quantitative Information in Tobacco Risk Communications
烟草风险沟通中定量信息的使用和影响
  • 批准号:
    10928289
  • 财政年份:
    2023
  • 资助金额:
    $ 20.4万
  • 项目类别:
Impact of Numeracy on Risk Perceptions of Tobacco-Related Diseases
计算能力对烟草相关疾病风险认知的影响
  • 批准号:
    10669759
  • 财政年份:
    2022
  • 资助金额:
    $ 20.4万
  • 项目类别:
Impact of Numeracy on Risk Perceptions of Tobacco-Related Diseases
计算能力对烟草相关疾病风险认知的影响
  • 批准号:
    10528795
  • 财政年份:
    2022
  • 资助金额:
    $ 20.4万
  • 项目类别:
New Trends in Localized Patterns in Partial Differential Equations: Mathematical Theory and Applications to Physics, Biology, and the Social Sciences
偏微分方程定域模式的新趋势:数学理论及其在物理、生物学和社会科学中的应用
  • 批准号:
    2013192
  • 财政年份:
    2020
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Standard Grant
Workshop: Mathematical Trends In Medical Imaging
研讨会:医学成像的数学趋势
  • 批准号:
    1953824
  • 财政年份:
    2020
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Standard Grant
New trends of energy gradient flow: mathematical aspects and various phenomena and applications
能量梯度流新趋势:数学方面和各种现象及应用
  • 批准号:
    20KK0058
  • 财政年份:
    2020
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Strategies for tuberculosis control in prisons
监狱结核病控制策略
  • 批准号:
    10607550
  • 财政年份:
    2017
  • 资助金额:
    $ 20.4万
  • 项目类别:
Understanding Recent Trends in Chlamydia in Ontario Using Applied Epidemiology and Mathematical Modeling
利用应用流行病学和数学模型了解安大略省衣原体的最新趋势
  • 批准号:
    283900
  • 财政年份:
    2012
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Studentship Programs
HIV and Tuberculosis Transmission and Future Trends in the African Population in
艾滋病毒和结核病的传播以及非洲人口的未来趋势
  • 批准号:
    8515313
  • 财政年份:
    2012
  • 资助金额:
    $ 20.4万
  • 项目类别:
HIV and Tuberculosis Transmission and Future Trends in the African Population in
艾滋病毒和结核病的传播以及非洲人口的未来趋势
  • 批准号:
    8874089
  • 财政年份:
    2012
  • 资助金额:
    $ 20.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了