ATD: Collaborative Research: Mathematical Challenges in Distributed Quickest Detection
ATD:协作研究:分布式最快检测中的数学挑战
基本信息
- 批准号:1265663
- 负责人:
- 金额:$ 18.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of the proposed research is to advance the state of the art of quickest detection by developing mathematical and statistical tools for systems consisting of large numbers of sensors with heterogeneous change times across sensors. Three related yet increasingly complicated and practical models will be considered. First, the assumption that the change times are the same at all sensors will be relaxed. The goal is to design quickest detection algorithms for the scenario with direct links between the sensors and the fusion center but with different change times. Next, the assumption that the access point can observe signals from all the sensors simultaneously will be relaxed. The goal is to develop quickest attack detection and localization algorithms for the scenario in which the fusion center can access only a subset of sensors at any given time. Finally, the assumption that there is a direct link between each sensor and the fusion center will be relaxed. The heterogeneity and sparsity of sensor observations will be exploited to develop quickest attack detection and localization algorithms for this scenario.The proposed research is expected to make substantial contributions to both applications and theory. On the application level, the proposed research has the potential to substantially improve the efficiency and robustness of chemical and biological threat detection algorithms. It is meant to develop lowcomplexity algorithms that will be useful for implementation. On the theoretical level, the proposed project will advance the state of the art of sequential analysis and contribute new approaches to the general methodological base for optimal stopping and control problems for quickest detection. The proposed work has widespread potential applications not only in the detection of chemical and biological threats but also other areas as well. For example, in medical diagnosis, there are often more than one symptom related to a disease and these symptoms do not necessarily occur at the same time. The results of this research can be used to improve the performance of medical diagnostic techniques. The breadth of applications of the proposed research also makes this an ideal topic for attracting students from diverse disciplines and backgrounds from applied mathematics to engineering.
所提出的研究的目的是通过开发数学和统计工具,包括大量的传感器与异构的变化时间跨传感器的系统,以推进最快的检测的艺术状态。将考虑三个相关的但日益复杂和实用的模型。首先,将放宽所有传感器的变化时间相同的假设。我们的目标是设计最快的检测算法的情况下,传感器和融合中心之间的直接链接,但不同的变化时间。接下来,接入点可以同时观察来自所有传感器的信号的假设将被放宽。我们的目标是开发最快的攻击检测和定位算法的情况下,融合中心只能访问一个子集的传感器在任何给定的时间。最后,假设每个传感器和融合中心之间有一个直接的链接将放宽。利用传感器观测数据的异质性和稀疏性,提出了一种快速的攻击检测和定位算法,具有重要的理论和应用价值。在应用层面上,所提出的研究有可能大大提高化学和生物威胁检测算法的效率和鲁棒性。它的目的是开发低复杂度的算法,这将是有用的实施。在理论层面上,拟议的项目将推进顺序分析的艺术状态,并为最佳停止和最快检测控制问题的一般方法基础提供新的方法。所提出的工作不仅在检测化学和生物威胁方面,而且在其他领域也具有广泛的潜在应用。例如,在医学诊断中,通常有一种以上的症状与疾病有关,这些症状不一定同时发生。这项研究的结果可以用来提高医疗诊断技术的性能。拟议研究的应用范围也使其成为吸引从应用数学到工程的不同学科和背景的学生的理想主题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lifeng Lai其他文献
Robust Risk-Sensitive Reinforcement Learning with Conditional Value-at-Risk
具有条件风险价值的鲁棒风险敏感强化学习
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Xinyi Ni;Lifeng Lai - 通讯作者:
Lifeng Lai
NEW USES FOR OLD SMARTPHONES
旧智能手机的新用途
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Lifeng Lai;Michael Smith;Kewen Gu - 通讯作者:
Kewen Gu
Minimax Optimal Q Learning with Nearest Neighbors
最近邻的 Minimax 最优 Q 学习
- DOI:
10.48550/arxiv.2308.01490 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Puning Zhao;Lifeng Lai - 通讯作者:
Lifeng Lai
Key Generation using Ternary Tree based Group Key Generation for Data Encryption and Classification
使用基于三叉树的组密钥生成进行数据加密和分类的密钥生成
- DOI:
10.5120/ijca2017912883 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Nikita Gupta;Amit Saxena;Maithili Narasimha;Randy Katz;Alfin Abraham;Lifeng Lai - 通讯作者:
Lifeng Lai
Ultra-reliable and low-latency communications: applications, opportunities and challenges
- DOI:
10.1007/s11432-020-2852-1 - 发表时间:
2021-01-20 - 期刊:
- 影响因子:7.600
- 作者:
Daquan Feng;Lifeng Lai;Jingjing Luo;Yi Zhong;Canjian Zheng;Kai Ying - 通讯作者:
Kai Ying
Lifeng Lai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lifeng Lai', 18)}}的其他基金
CIF: Small: Adversarially Robust Reinforcement Learning: Attack, Defense, and Analysis
CIF:小型:对抗性鲁棒强化学习:攻击、防御和分析
- 批准号:
2232907 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
CIF: SMALL: kNN methods for functional estimation and machine learning
CIF:SMALL:用于功能估计和机器学习的 kNN 方法
- 批准号:
2112504 - 财政年份:2021
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Sketching for High Dimensional Data Analysis in IoT
CCSS:协作研究:物联网高维数据分析草图
- 批准号:
2000415 - 财政年份:2020
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
CIF: Small: Adversarially Robust Statistical Inference
CIF:小:对抗性稳健的统计推断
- 批准号:
1908258 - 财政年份:2019
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
CIF: Small: Distributed Statistical Inference with Compressed Data
CIF:小型:使用压缩数据进行分布式统计推断
- 批准号:
1717943 - 财政年份:2017
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
CCSS: Quickest Detection Under Energy Constraints
CCSS:能量限制下最快的检测
- 批准号:
1711468 - 财政年份:2017
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
CAREER: Building Secure Wireless Communication Systems via Physical Layer Resources
职业:通过物理层资源构建安全的无线通信系统
- 批准号:
1760889 - 财政年份:2017
- 资助金额:
$ 18.69万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Secret Key Generation Under Resource Constraints
CIF:小型:协作研究:资源限制下的密钥生成
- 批准号:
1665073 - 财政年份:2016
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Developing A Physical-Channel Based Lightweight Authentication System for Wireless Body Area Networks
CCSS:协作研究:为无线体域网开发基于物理通道的轻量级身份验证系统
- 批准号:
1660140 - 财政年份:2016
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Secret Key Generation Under Resource Constraints
CIF:小型:协作研究:资源限制下的密钥生成
- 批准号:
1618017 - 财政年份:2016
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319371 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319372 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319551 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220523 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220529 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant