SHF:Medium:Collaborative Reseach: Electrical-thermal Co-Design of Microfluidically-Cooled 3D IC's

SHF:媒介:协作研究:微流控 3D IC 的电热协同设计

基本信息

  • 批准号:
    1302375
  • 负责人:
  • 金额:
    $ 46.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

The technical goal of this project is to develop and refine the micro-fluidic 3D IC cooling technology. While 3D integration offers significant potential for improving the performance, energy efficiency and functionality of electronic systems, the problem of heat removal is significantly exacerbated. Conventional air cooling alone would be incapable of addressing the future 3D IC heat removal requirements. In this project, the PIs are investigating use of aggressive micro-fluidic cooling technology for cooling 3D ICs. The team comprises researchers from University of Maryland and Georgia Institute of Technology. The Georgia Tech team would bring forth significant expertise in fabrication and modeling of 3D ICs with interlayer micro-fluidic cooling. The Maryland team will bring forth expertise in VLSI design methodologies. The primary focus of this proposal is: development of techniques and tools for co-design of micro-fluidic embedded cooling and electrical aspects of 3D ICs.This proposal would directly support several PhD students in different disciplines. Because of the cross disciplinary nature of this proposal, these students would need to learn diverse set of topics pertaining to fluidics, chip design and thermal management. Undergraduates will also be involved through various programs at Georgia Tech and Maryland. The outcomes of this research will be published in respectable venues in both electrical/computer engineering and mechanical engineering. The tools, models and experimental data will also be made available on the web. The PIs plan to organize tutorials at various conferences and educational forums. Special emphasis will be givenon minority involvement via collaboration with local HBCUs.
该项目的技术目标是开发和完善微流体3D IC冷却技术。虽然3D集成为提高电子系统的性能、能效和功能提供了巨大的潜力,但散热问题却大大加剧。传统的空气冷却单独将无法解决未来的3D IC散热要求。在这个项目中,PI正在研究使用积极的微流体冷却技术来冷却3D IC。该团队由来自马里兰州大学和格鲁吉亚理工学院的研究人员组成。格鲁吉亚技术团队将在利用层间微流体冷却的3D IC的制造和建模方面带来重要的专业知识。马里兰州团队将带来超大规模集成电路设计方法的专业知识。该提案的主要重点是:开发用于3D IC的微流体嵌入式冷却和电气方面的协同设计的技术和工具。该提案将直接支持不同学科的多名博士生。由于该提案的跨学科性质,这些学生需要学习与流体学,芯片设计和热管理有关的各种主题。本科生也将通过在格鲁吉亚理工学院和马里兰州的各种计划参与。这项研究的成果将在电气/计算机工程和机械工程领域的知名场所发表。这些工具、模型和实验数据也将在网上提供。PI计划在各种会议和教育论坛上组织教程。将特别强调通过与当地HBCUs的合作,让少数民族参与。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Value-driven Synthesis for Neural Network ASICs
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ankur Srivastava其他文献

Statistical timing analysis using Kernel smoothing
使用内核平滑进行统计时序分析
A Comprehensive Probabilistic Framework to Learn Air Data from Surface Pressure Measurements
从表面压力测量中了解空气数据的综合概率框架
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ankur Srivastava;A. Meade
  • 通讯作者:
    A. Meade
Energy-aware video storage and retrieval in server environments
服务器环境中的节能视频存储和检索
Energy-aware and quality-scalable data placement and retrieval for disks in video server environments
视频服务器环境中磁盘的能源感知和质量可扩展的数据放置和检索
Sex Disparities in the Management, Outcomes, and Transfer of Patients Hospitalized for Cardiogenic Shock
心源性休克住院患者的管理、结果和转院方面的性别差异
  • DOI:
    10.1016/j.jscai.2023.101212
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paulina Luna;Luke K. Kim;I. Yeo;N. Narula;Diala Steitieh;Pritha Subramanyam;M. Karas;E. Iannacone;Yoshifumi Naka;Natalia I Girardi;Ankur Srivastava;David Majure;Jaya Kanduri;Evelyn M Horn;Jim W. Cheung;D. Feldman;Daniel Y. Lu
  • 通讯作者:
    Daniel Y. Lu

Ankur Srivastava的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ankur Srivastava', 18)}}的其他基金

SaTC: CORE: Small: A High Level Synthesis Approach to Logic Obfuscation
SaTC:核心:小:逻辑混淆的高级综合方法
  • 批准号:
    1953285
  • 财政年份:
    2020
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Standard Grant
SI2-SSE: 3DSIM: A Unified Framework for 3D CPU Co-Simulation
SI2-SSE:3DSIM:3D CPU 协同仿真的统一框架
  • 批准号:
    1642424
  • 财政年份:
    2017
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Standard Grant
TWC: Small: Physically Unclonable Function (PUF) Enhancements Via Lithography and Design Partnership
TWC:小型:通过光刻和设计合作增强物理不可克隆功能 (PUF)
  • 批准号:
    1223233
  • 财政年份:
    2012
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Standard Grant
CIF: SMALL: Information Theoretic Multi-Core Processor Thermal Profile Estimation
CIF:SMALL:信息论多核处理器热分布估计
  • 批准号:
    0917057
  • 财政年份:
    2009
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Standard Grant
Optimization Schemes for Large Scale Digital Circuits in Presence of Fabrication Randomness
存在制造随机性的大规模数字电路的优化方案
  • 批准号:
    0728969
  • 财政年份:
    2007
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Standard Grant
SGER: Lithography- Constrained Analysis of Very Large Scale Carbon Nanotube and Graphene Strip Embedded CMOS Digital ICs
SGER:超大规模碳纳米管和石墨烯条嵌入式 CMOS 数字 IC 的光刻约束分析
  • 批准号:
    0634321
  • 财政年份:
    2006
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: High-Performance, Verified Accelerator Programming
合作研究:SHF:中:高性能、经过验证的加速器编程
  • 批准号:
    2313024
  • 财政年份:
    2023
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了