Collaborative Research: Defects and Dopants in Critical Wide Band Gap Semiconductors - ZnO, InGaZnO, Ga2O3 and ScN

合作研究:关键宽带隙半导体中的缺陷和掺杂剂 - ZnO、InGaZnO、Ga2O3 和 ScN

基本信息

  • 批准号:
    1800130
  • 负责人:
  • 金额:
    $ 36.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Nontechnical description: The project explores the electronic and chemical properties of atomic-scale imperfections in the semiconductors zinc oxide, gallium oxide, indium gallium oxide, and scandium nitride with a specific focus on controlling such defects for higher power, speed, and light output of advanced electronic devices. Such defects may degrade semiconductor properties by trapping charge carriers to reduce the current and charge speed. These imperfections depend sensitively on the specific techniques used for growing and/or subsequent thermal, chemical, and plasma treatments. The research, which combines experimental studies with transport modeling, is aimed at measuring the optical properties of lattice structural and chemical imperfections of these relatively unexplored semiconductors, using growth variations, plasma, hydrogen annealing, and irradiation treatments to identify their physical nature and electrical measurements in magnetic fields to identify their ability to donate or accept electrons. The project ultimate goal is to understand the nature of these defects and eventually to eliminate them. The ability to remove these structural and/or chemical defects impacts a range of technologies. Zinc oxide is a prime candidate to replace today's high-cost materials in solar cells, digital displays, and light emitting diodes. Gallium oxide's ability to handle very high voltages can improve power switches for telecommunications and power transmission. Indium gallium oxide can provide higher speed displays and high-resolution TVs. Scandium nitride can lower resistance and power consumption of metallic contacts to semiconductors used in cellphones. The activities provide collaborative research opportunities for a graduate student, several university undergraduates, and high school students from an all-girl's high school.Technical description: The research focuses on fundamental studies of native point defects in the semiconductors ZnO, Ga2O3, InGaZnO, and ScN, which have emerged as critical materials for advanced high power and optoelectronic display applications. ZnO, doped with Ga or Al, is the prime candidate to replace expensive indium tin oxide in solar cells, displays, light emitting diodes, and touchscreens. Ga2O3 is the dominant new material for power switches because of its record high breakdown voltage. InGaZnO is the dominant amorphous oxide replacing amorphous-Si transistors in displays and high-resolution TVs (e.g., Sharp). ScN can improve ohmic contacts in GaN-based devices and serve as a buffer layer for GaN-on-Si technology. All four can be highly doped with impurity donors, yet all four are impacted by deep level defects that compensate free carriers and introduce scattering that reduces carrier mobility. The nature of native point defects in Ga2O3, InGaZnO, and ScN as well as ZnO is almost completely unexplored, yet these defects can have a major impact on carrier density, mobility, and interface transport. The research team will measure the spatial distribution and physical nature of specific defects using 3-dimensional nanoscale optical spectroscopies coupled with donor /acceptor densities and dielectric properties by temperature-dependent Hall effect and reflectance/transmission measurements, respectively, in order to identify and quantify defect densities on a near-nm scale and understand how to control them through new growth and processing techniques. The goals of this work are to understand the primary compensating defects in these compounds that limit degenerate doping and produce lower mobilities, combining near-surface remote plasma, implantation and thermal processing with optical and surface science techniques to identify these native point defects, correlate them with donor/acceptor densities, and chemically control them. The project also aims to explore the impact of these defects on barriers and transport at Schottky barriers and heterojunctions involving these semiconductors. The overall goal of the project is to control these defects and their impact on carrier densities and junction transport by selected growth and processing techniques that improve conductivity and interface properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性描述:该项目探索了半导体氧化锌,氧化镓,氧化铟镓和氮化钪中原子级缺陷的电子和化学性质,特别关注控制这些缺陷,以提高先进电子设备的功率,速度和光输出。这种缺陷可能通过捕获电荷载流子以降低电流和充电速度而使半导体性能劣化。这些缺陷敏感地取决于用于生长和/或随后的热、化学和等离子体处理的特定技术。该研究将实验研究与传输建模相结合,旨在测量这些相对未开发的半导体的晶格结构和化学缺陷的光学特性,使用生长变化,等离子体,氢退火和辐照处理来确定它们的物理性质和磁场中的电气测量,以确定它们捐赠或接受电子的能力。项目的最终目标是了解这些缺陷的性质,并最终消除它们。去除这些结构和/或化学缺陷的能力影响了一系列技术。氧化锌是替代当今太阳能电池、数字显示器和发光二极管中高成本材料的主要候选材料。氧化镓处理极高电压的能力可以改善电信和电力传输的电源开关。氧化铟镓可以提供更高速度的显示器和高分辨率的电视。氮化钪可以降低手机中使用的半导体金属触点的电阻和功耗。该活动为一名研究生、几名大学本科生和一所女子高中的高中生提供了合作研究的机会。技术说明:研究重点是半导体ZnO、Ga 2 O3、InGaZnO和ScN中的原生点缺陷的基础研究,这些半导体已成为先进的高功率和光电显示应用的关键材料。掺杂Ga或Al的ZnO是在太阳能电池、显示器、发光二极管和触摸屏中取代昂贵的铟锡氧化物的主要候选者。Ga_2O_3具有极高的击穿电压,是功率开关的主要新材料。InGaZnO是在显示器和高分辨率TV(例如,Sharp)。ScN可以改善GaN基器件中的欧姆接触,并用作GaN-on-Si技术的缓冲层。所有四种都可以用杂质施主高度掺杂,但所有四种都受到深能级缺陷的影响,这些缺陷补偿自由载流子并引入降低载流子迁移率的散射。在Ga 2 O3,InGaZnO和ScN以及ZnO中的本征点缺陷的性质几乎完全未被探索,但这些缺陷可以对载流子密度,迁移率和界面传输产生重大影响。研究小组将使用三维纳米级光谱测量特定缺陷的空间分布和物理性质,并分别通过温度依赖性霍尔效应和反射率/透射率测量结合供体/受体密度和介电特性,以识别和量化近纳米级的缺陷密度,并了解如何通过新的生长和加工技术控制它们。这项工作的目标是了解这些化合物中的主要补偿缺陷,限制简并掺杂和产生较低的迁移率,结合近表面远程等离子体,注入和热处理与光学和表面科学技术,以确定这些原生点缺陷,将它们与供体/受体密度,并化学控制它们。该项目还旨在探索这些缺陷对肖特基势垒和涉及这些半导体的异质结的势垒和传输的影响。该项目的总体目标是控制这些缺陷及其对载流子密度和结输运的影响,通过选择提高导电性和界面性能的生长和处理技术。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Defect Characterization, Imaging, and Control in Wide-Bandgap Semiconductors and Devices
  • DOI:
    10.1007/s11664-018-6214-9
  • 发表时间:
    2018-09-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Brillson, L. J.;Foster, G. M.;Allen, M. W.
  • 通讯作者:
    Allen, M. W.
Identification of a functional point defect in SrTiO3
  • DOI:
    10.1103/physrevmaterials.2.060403
  • 发表时间:
    2018-06-21
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Lee, Daesu;Wang, Hongwei;Eom, Chang-Beom
  • 通讯作者:
    Eom, Chang-Beom
Depth-resolved cathodoluminescence and surface photovoltage spectroscopies of gallium vacancies in β-Ga 2 O 3 with neutron irradiation and forming gas anneals
中子辐照和形成气体退火的 β-Ga 2 O 3 中镓空位的深度分辨阴极发光和表面光电压光谱
  • DOI:
    10.1116/6.0001240
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Gao, Hantian;Muralidharan, Shreyas;Karim, Md Rezaul;Cao, Lei R.;Leedy, Kevin D.;Zhao, Hongping;Rajan, Siddharth;Look, David C.;Brillson, Leonard J.
  • 通讯作者:
    Brillson, Leonard J.
Experimental determination of the valence band offsets of ZnGeN2 and (ZnGe)0.94Ga0.12N2 with GaN
ZnGeN2 和 (ZnGe)0.94Ga0.12N2 与 GaN 价带偏移的实验测定
  • DOI:
    10.1088/1361-6463/abee45
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karim, Md Rezaul;Noesges, Brent A.;Jayatung, Benthara Hewage;Zhu, Menglin;Hwang, Jinwoo;Lambrecht, Walter R.;Brillson, Leonard J.;Kash, Kathleen;Zhao, Hongping
  • 通讯作者:
    Zhao, Hongping
Classical and quantum conductivity in β-Ga2O3
β-Ga2O3 的经典电导率和量子电导率
  • DOI:
    10.1038/s41598-018-38419-0
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Look, David C.;Leedy, Kevin D.
  • 通讯作者:
    Leedy, Kevin D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonard Brillson其他文献

Leonard Brillson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonard Brillson', 18)}}的其他基金

Native Point Defects, Electronically Active Impurities, and Plasmonics at ZnO Interfaces
ZnO 界面上的本征点缺陷、电子活性杂质和等离激元
  • 批准号:
    1305193
  • 财政年份:
    2013
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Continuing Grant
Localized States, Chemical Reactions, and Charge Transport at ZnO Surfaces and Interfaces
ZnO 表面和界面的局域态、化学反应和电荷传输
  • 批准号:
    0803276
  • 财政年份:
    2008
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Standard Grant
GOALI: Growth-Dependent Identification and Control of Bulk and Interface Defects in ZnO
目标:ZnO 中体相和界面缺陷的生长依赖性识别和控制
  • 批准号:
    0513968
  • 财政年份:
    2005
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Continuing Grant
ACT-SGER: Charge Exchange and Chemical Structure at Protein-Semiconductor Interfaces
ACT-SGER:蛋白质-半导体界面的电荷交换和化学结构
  • 批准号:
    0346428
  • 财政年份:
    2003
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Standard Grant
FRG: Morphological Electronic and Chemical Structure of Lattice-Mismatched III-V Heterojunctions
FRG:晶格失配 III-V 异质结的形态电子结构和化学结构
  • 批准号:
    0076362
  • 财政年份:
    2000
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Continuing Grant
Development of Instrumentation for Combined Secondary Ion Mass Spectrometry, Cathodoluminescence Spectroscopy, and Chemical Processing
二次离子质谱、阴极发光光谱和化学加工组合仪器的开发
  • 批准号:
    0079438
  • 财政年份:
    2000
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Standard Grant
Interface Electronic Properties and Growth Parameters of Heterovalent Semiconductor Heterojunctions
异价半导体异质结的界面电子性质和生长参数
  • 批准号:
    9711851
  • 财政年份:
    1997
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344490
  • 财政年份:
    2024
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Standard Grant
Collaborative Research: An Effective and Efficient Low-Cost Alternate to Cell Aware Test Generation for Cell Internal Defects
协作研究:针对电池内部缺陷的电池感知测试生成有效且高效的低成本替代方案
  • 批准号:
    2331003
  • 财政年份:
    2023
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Standard Grant
Collaborative Research: An Effective and Efficient Low-Cost Alternate to Cell Aware Test Generation for Cell Internal Defects
协作研究:针对电池内部缺陷的电池感知测试生成有效且高效的低成本替代方案
  • 批准号:
    2331002
  • 财政年份:
    2023
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Modulating Powder Bed Cohesion to Reduce Defects in Binder Jetting
合作研究:调节粉床内聚力以减少粘合剂喷射缺陷
  • 批准号:
    2223002
  • 财政年份:
    2021
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Nanoscale Heterostructures and Defects in Two-Dimensional Materials
合作研究:纳米级异质结构和二维材料缺陷
  • 批准号:
    2006456
  • 财政年份:
    2021
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: Nanoscale Heterostructures and Defects in Two-Dimensional Materials
合作研究:纳米级异质结构和二维材料缺陷
  • 批准号:
    2006446
  • 财政年份:
    2021
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: Modulating Powder Bed Cohesion to Reduce Defects in Binder Jetting
合作研究:调节粉床内聚力以减少粘合剂喷射缺陷
  • 批准号:
    1946724
  • 财政年份:
    2020
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了