GOALI: Growth-Dependent Identification and Control of Bulk and Interface Defects in ZnO

目标:ZnO 中体相和界面缺陷的生长依赖性识别和控制

基本信息

项目摘要

Technical. ZnO is a leading candidate for the next generation of electronics, stemming from the recent introduction of blue light emitters and high power field-effect transistors based on GaN, and the realization that ZnO is a fundamentally better material for these applications. That is, ZnO is cheaper, less toxic, easier to grow, more efficient as an emitter, and faster as a transistor. Perhaps the most near-term commercial application will be solid-state lighting, which is forecast to dominate the artificial lighting industry by 2025, and at an annual cost savings of $125 Billion. However, ZnO as a material is not ready for such applications. It cannot be easily made "p-type," which is a necessary step in the fabrication of a light emitting p-n homojunction. Secondly, it is difficult to form Schottky barriers, which are required for field-effect transistors. Thirdly, its surface and interface properties are difficult to control, largely because of the polar nature of the surface. These problems must be addressed and solved before ZnO will be a commercially viable material. In view of this, this GOALI (Grant Opportunity for Academic Liaison with Industry) project addresses the key issues determining advances in ZnO materials science and electronics. The approach encompasses: (a) controlled growth of state-of-the-art ZnO provided by the industrial partner, (b) characterization of bulk and interface properties by the academic partners using a complement of electronic, optical, and surface science techniques, (c) analysis of systematic growth variations to isolate pivotal defect and doping mechanisms, and (d) synergistic feedback of these results to further refine the growth process. The objectives and intellectual merit for the project are to: (1) understand the complex relationships between growth, processing, intrinsic defects and extrinsic doping in both the bulk and at the interface and (2) use these findings to create ZnO single crystal films and bulk wafers that expand the range of optoelectronic applications by enabling full control of doping, interface states and barrier formation. This GOALI project aims to address these issues in the most direct approach possible, by linking key physical properties with systematic variations in growth. The interdisciplinary GOALI team consists of researchers who combine complementary and unique expertise in single crystal growth, characterization, and modeling with a shared interest to explore and exploit the relationships between growth, electronic and structural properties, and interface properties of wide band gap semiconductors. Core activities include: (1) developing crystal growth techniques that identify and control electrically-active defects; (2) establishing growth principles that facilitate the incorporation and activation of p-type dopants; (3) creating interface characterization techniques that provide key electronic, chemical, and structural information on ZnO formed under different controlled growth conditions; and (4) exploring the role of pre-growth surface chemistry in defect and interface state formation at ZnO homoepitaxial junctions. Non-Technical. The broader impacts of this GOALI collaboration include yearly personnel exchanges that place graduate research students, undergraduates, and university personnel in direct contact with industrial scientists at ZN Technology in closely coordinated activities. These exchanges will provide opportunities to broaden students' education by providing exposure to industrial researchers both within academia and a high technology industry environment, as well as access to advanced crystal growth and characterization equipment. The collaboration also provides summer research experiences relevant to industry for promising local high school students in Columbus and Dayton, especially women at the Columbus School for Girls, as well as students via a strongly affiliated Air Force Research Laboratory summer program. .
技术上的。由于最近基于GaN的蓝光发射器和高功率场效应晶体管的引入,以及人们意识到对于这些应用来说,氧化锌是一种从根本上更好的材料,氧化锌是下一代电子产品的领先候选者。也就是说,氧化锌更便宜,毒性更小,更容易生长,作为发射器更有效,作为晶体管更快。也许最近期的商业应用将是固态照明,预计到2025年,固态照明将主导人工照明行业,每年可节省1250亿美元的成本。然而,作为一种材料,氧化锌还没有为这种应用做好准备。它不容易制造成“p型”,而p型是制造发光p-n同质结的必要步骤。其次,很难形成场效应晶体管所需的肖特基势垒。第三,它的表面和界面性质很难控制,这主要是因为表面的极性。在氧化锌成为商业上可行的材料之前,这些问题必须得到解决。有鉴于此,GOALI(学术与工业联系机会)项目解决了决定氧化锌材料科学和电子技术进步的关键问题。该方法包括:(A)由工业合作伙伴提供的最先进的氧化锌的受控生长,(B)由学术合作伙伴利用补充的电子、光学和表面科学技术来表征块体和界面性质,(C)分析系统的生长变化,以分离关键缺陷和掺杂机制,以及(D)这些结果的协同反馈,以进一步优化生长过程。该项目的目标和智力优势是:(1)了解体相和界面中生长、加工、本征缺陷和外在掺杂之间的复杂关系,以及(2)利用这些发现,通过实现对掺杂、界面态和势垒形成的完全控制,来制造扩大光电子应用范围的氧化锌单晶薄膜和体片。这一目标项目旨在以尽可能直接的方法解决这些问题,将关键的物理特性与生长的系统差异联系起来。跨学科的Goali团队由研究人员组成,他们结合了在单晶生长、表征和建模方面的互补和独特的专业知识,并有共同的兴趣来探索和利用宽带隙半导体的生长、电子和结构特性以及界面特性之间的关系。核心活动包括:(1)开发识别和控制电活性缺陷的晶体生长技术;(2)建立促进p型掺杂掺入和激活的生长原理;(3)创建界面表征技术,提供在不同受控生长条件下形成的氧化锌的关键电子、化学和结构信息;以及(4)探索生长前表面化学在氧化锌同质外延结缺陷和界面态形成中的作用。非技术性。这种GALI合作的更广泛影响包括每年的人员交流,使研究生、本科生和大学人员在密切协调的活动中与ZN科技的工业科学家直接接触。这些交流将提供机会,通过接触学术界和高科技行业环境中的工业研究人员,以及获得先进的晶体生长和表征设备,扩大学生的教育。该合作还为哥伦布和代顿有前途的当地高中生,特别是哥伦布女子学校的女性,以及通过一个强有力的空军研究实验室暑期项目的学生提供与工业相关的暑期研究经验。。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonard Brillson其他文献

Leonard Brillson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonard Brillson', 18)}}的其他基金

Collaborative Research: Defects and Dopants in Critical Wide Band Gap Semiconductors - ZnO, InGaZnO, Ga2O3 and ScN
合作研究:关键宽带隙半导体中的缺陷和掺杂剂 - ZnO、InGaZnO、Ga2O3 和 ScN
  • 批准号:
    1800130
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Native Point Defects, Electronically Active Impurities, and Plasmonics at ZnO Interfaces
ZnO 界面上的本征点缺陷、电子活性杂质和等离激元
  • 批准号:
    1305193
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Localized States, Chemical Reactions, and Charge Transport at ZnO Surfaces and Interfaces
ZnO 表面和界面的局域态、化学反应和电荷传输
  • 批准号:
    0803276
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ACT-SGER: Charge Exchange and Chemical Structure at Protein-Semiconductor Interfaces
ACT-SGER:蛋白质-半导体界面的电荷交换和化学结构
  • 批准号:
    0346428
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Morphological Electronic and Chemical Structure of Lattice-Mismatched III-V Heterojunctions
FRG:晶格失配 III-V 异质结的形态电子结构和化学结构
  • 批准号:
    0076362
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of Instrumentation for Combined Secondary Ion Mass Spectrometry, Cathodoluminescence Spectroscopy, and Chemical Processing
二次离子质谱、阴极发光光谱和化学加工组合仪器的开发
  • 批准号:
    0079438
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Interface Electronic Properties and Growth Parameters of Heterovalent Semiconductor Heterojunctions
异价半导体异质结的界面电子性质和生长参数
  • 批准号:
    9711851
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

基于FP-Growth关联分析算法的重症患者抗菌药物精准决策模型的构建和实证研究
  • 批准号:
    2024Y9049
  • 批准年份:
    2024
  • 资助金额:
    100.0 万元
  • 项目类别:
    省市级项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Characterizing the Molecular Mechanisms of PRSS56-Dependent Ocular Growth and Refractive Error
表征 PRSS56 依赖性眼生长和屈光不正的分子机制
  • 批准号:
    10705558
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Characterizing the Molecular Mechanisms of PRSS56-Dependent Ocular Growth and Refractive Error
表征 PRSS56 依赖性眼生长和屈光不正的分子机制
  • 批准号:
    10367868
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Mechanistic role of phosphatidylinositol 5-phosphate 4-kinase beta in GTP-dependent lysosomal acidification for stress-resilient cell growth and metabolism
磷脂酰肌醇5-磷酸4-激酶β在GTP依赖性溶酶体酸化对应激恢复细胞生长和代谢中的机制作用
  • 批准号:
    10592707
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Exercise-dependent modulation of natural killer cells during human growth
人体生长过程中自然杀伤细胞的运动依赖性调节
  • 批准号:
    RGPIN-2018-06774
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mechanistic role of phosphatidylinositol 5-phosphate 4-kinase beta in GTP-dependent lysosomal acidification for stress-resilient cell growth and metabolism
磷脂酰肌醇5-磷酸4-激酶β在GTP依赖性溶酶体酸化中对应激恢复细胞生长和代谢的机制作用
  • 批准号:
    10797540
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Tumor growth and metastasis via podoplanin-dependent platelet aggregation
通过平足蛋白依赖性血小板聚集实现肿瘤生长和转移
  • 批准号:
    22H02906
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exercise-dependent modulation of natural killer cells during human growth
人体生长过程中自然杀伤细胞的运动依赖性调节
  • 批准号:
    RGPIN-2018-06774
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Regulation of DGAT - dependent lipogenesis in colonic epithelial growth
结肠上皮生长中 DGAT 依赖性脂肪生成的调节
  • 批准号:
    10863387
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Regulation of DGAT - dependent lipogenesis in colonic epithelial growth
结肠上皮生长中 DGAT 依赖性脂肪生成的调节
  • 批准号:
    10380792
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Regulation of DGAT - dependent lipogenesis in colonic epithelial growth
结肠上皮生长中 DGAT 依赖性脂肪生成的调节
  • 批准号:
    10598554
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了