ACT-SGER: Charge Exchange and Chemical Structure at Protein-Semiconductor Interfaces

ACT-SGER:蛋白质-半导体界面的电荷交换和化学结构

基本信息

项目摘要

This project addresses electronic properties of semiconductor interfaces with biological molecules with an aim toward improved sensors. Biological molecules exhibit charge transfer at semiconductor interfaces that change as the adsorbed molecules link to other biological species. Understanding and control of the bio/semiconductor interface along with its electronic, chemical, and biological activity may enable advances in biosensors for monitoring biological functions in vivo, detecting pathogens and other biologically active species. The goal of this project is to understand, optimize, and control these bioelectronic phenomena. Surface science, electronic, and biological techniques will be used to characterize protein-semiconductor interfaces on an atomic scale. Materials science and ultrahigh vacuum processing techniques will be used to control chemical activity and morphology of the surface and the resultant interface. Along with study of chemical and morphological conditions, research on preparation and deposition conditions of model biomolecules to obtain a range of charge transfer with the semiconductor and with biomolecules bound to its surface is included. It is anticipated that basic science understanding of biomolecular-semiconductor interfaces could catalyze a new avenue of research into studies of biological species interfaced to electronic materials. For example, an understanding of the systematics between the biomolecule's native charge state during deposition, the resultant charge exchange with silicon and its native oxide, and its subsequent change with further conjugation could provide design rules for creating biosensors with high biological specificity. Similarly, the understanding and control of charge transfer at biological material interfaces extends to electrical signal generation and propagation by nerve cells on artificial scaffolds, self-organization of proteins coating patterned substrates, and in-vivo immunoassay of specific biological material. Key specific goals of the project are correlation of charge exchange measured at the Si/SiO2 interface with the known charge properties of conjugated biomolecules or proteins, with the morphology of the Si/SiO2 surface layer, and with the protein's strength of bonding with this layer. This knowledge may have significant technological impact on the design of biological sensors if the use of an established technology-semiconductor transistors-can be extended with the design of biologically active and specific charge transfer sites. Success in this project is expected to lead to the implementation of this approach in devices of high commercial and security value. With high sensitivity and selectivity, such devices could advance the use of surface chemical and morphologic modification in venues such as in-vivo biomedical sensors, sensors for pathogenic organisms, environmental gas sensors, and for monitoring and protecting the nation's food supply. %%% The project addresses fundamental research issues associated with electronic/photonic and biological materials having technological relevance. An important feature of the project is the strong emphasis on education, with emphasis on integration of research and education. Students will be trained in a variety of modern electronic, processing, and surface science techniques, as well as in biomolecular engineering and characterization. The interdisciplinary training afforded by this project will help build a skilled workforce in rapidly developing bioengineering fields. This award is supported jointly by the NSF and the Intelligence Community. The Approaches to Combat Terrorism (ACT) Program in the Directorate for Mathematics and Physical Sciences supports new concepts in basic research and workforce development with the potential to contribute to national security.
该项目研究半导体与生物分子界面的电子特性,旨在改进传感器。生物分子在半导体界面上表现出电荷转移,当被吸附的分子与其他生物物种连接时,这种转移会发生变化。了解和控制生物/半导体界面及其电子、化学和生物活性可能会使生物传感器在体内监测生物功能、检测病原体和其他生物活性物种方面取得进展。该项目的目标是了解、优化和控制这些生物电子现象。表面科学、电子和生物技术将用于在原子尺度上表征蛋白质-半导体界面。材料科学和超高真空加工技术将用于控制表面和所得界面的化学活性和形态。在研究化学和形态条件的同时,还研究了模型生物分子的制备和沉积条件,以获得与半导体以及与生物分子结合在其表面的电荷转移范围。预计对生物分子-半导体界面的基础科学理解可以催化研究与电子材料界面的生物物种的新途径。例如,了解生物分子在沉积过程中的天然电荷状态、与硅及其天然氧化物产生的电荷交换以及随后随着进一步偶联而发生的变化之间的系统关系,可以为创造具有高生物特异性的生物传感器提供设计规则。同样,对生物材料界面电荷转移的理解和控制延伸到神经细胞在人工支架上的电信号产生和传播、蛋白质涂层的自组织以及特定生物材料的体内免疫分析。该项目的关键具体目标是在Si/SiO2界面上测量的电荷交换与已知共轭生物分子或蛋白质的电荷性质、Si/SiO2表面层的形态以及蛋白质与该层的结合强度之间的相关性。如果现有技术(半导体晶体管)的使用可以扩展到生物活性和特定电荷转移位点的设计,那么这些知识可能会对生物传感器的设计产生重大的技术影响。该项目的成功有望导致这种方法在具有高商业和安全价值的设备中实施。这种装置具有高灵敏度和选择性,可以促进表面化学和形态修饰在活体生物医学传感器、病原生物传感器、环境气体传感器以及监测和保护国家食品供应等领域的应用。该项目涉及与电子/光子和具有技术相关性的生物材料相关的基础研究问题。该项目的一个重要特点是高度重视教育,强调研究与教育的结合。学生将接受各种现代电子、加工和表面科学技术以及生物分子工程和表征方面的培训。该项目提供的跨学科培训将有助于在快速发展的生物工程领域培养熟练的劳动力。该奖项由美国国家科学基金会和情报界共同支持。数学和物理科学理事会的反恐方法(ACT)项目支持基础研究和劳动力发展方面的新概念,这些新概念有可能有助于国家安全。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonard Brillson其他文献

Leonard Brillson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonard Brillson', 18)}}的其他基金

Collaborative Research: Defects and Dopants in Critical Wide Band Gap Semiconductors - ZnO, InGaZnO, Ga2O3 and ScN
合作研究:关键宽带隙半导体中的缺陷和掺杂剂 - ZnO、InGaZnO、Ga2O3 和 ScN
  • 批准号:
    1800130
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Native Point Defects, Electronically Active Impurities, and Plasmonics at ZnO Interfaces
ZnO 界面上的本征点缺陷、电子活性杂质和等离激元
  • 批准号:
    1305193
  • 财政年份:
    2013
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Localized States, Chemical Reactions, and Charge Transport at ZnO Surfaces and Interfaces
ZnO 表面和界面的局域态、化学反应和电荷传输
  • 批准号:
    0803276
  • 财政年份:
    2008
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
GOALI: Growth-Dependent Identification and Control of Bulk and Interface Defects in ZnO
目标:ZnO 中体相和界面缺陷的生长依赖性识别和控制
  • 批准号:
    0513968
  • 财政年份:
    2005
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
FRG: Morphological Electronic and Chemical Structure of Lattice-Mismatched III-V Heterojunctions
FRG:晶格失配 III-V 异质结的形态电子结构和化学结构
  • 批准号:
    0076362
  • 财政年份:
    2000
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Development of Instrumentation for Combined Secondary Ion Mass Spectrometry, Cathodoluminescence Spectroscopy, and Chemical Processing
二次离子质谱、阴极发光光谱和化学加工组合仪器的开发
  • 批准号:
    0079438
  • 财政年份:
    2000
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Interface Electronic Properties and Growth Parameters of Heterovalent Semiconductor Heterojunctions
异价半导体异质结的界面电子性质和生长参数
  • 批准号:
    9711851
  • 财政年份:
    1997
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似海外基金

SGER: Towards a Generic Provenance Metadata Management System
SGER:迈向通用来源元数据管理系统
  • 批准号:
    1049339
  • 财政年份:
    2010
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SGER: Deception as a Resource in Design to Support Interpersonal Awareness
SGER:欺骗作为设计中支持人际意识的资源
  • 批准号:
    0843215
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SGER: A Functional Assay to Test Conserved Mechanisms of Sex Determination in the Turtle, T. scripta
SGER:测试海龟性别决定保守机制的功能测定,T. scripta
  • 批准号:
    0849646
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: SGER: Layout Generation Tools for Double-Gate-Transistor-Array-Based IC Designs
合作研究:SGER:基于双栅极晶体管阵列的 IC 设计的布局生成工具
  • 批准号:
    0904124
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SGER- Role of structural RNA in the organization of cellular cytoskeleton
SGER-结构RNA在细胞骨架组织中的作用
  • 批准号:
    0904186
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SGER: Towards a Generic Provenance Metadata Management System
SGER:迈向通用来源元数据管理系统
  • 批准号:
    0904476
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SGER: Neural correlates of action videogame training: An exploratory fMRI study
SGER:动作视频游戏训练的神经相关性:一项探索性功能磁共振成像研究
  • 批准号:
    0823506
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CISE-CCF-AF-Algebra: SGER: Computational Methods for Systems of Difference Equations
CISE-CCF-AF-代数:SGER:差分方程组的计算方法
  • 批准号:
    0901175
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SGER: Flash Conversion of Graphite Oxide to Graphene
SGER:氧化石墨快速转化为石墨烯
  • 批准号:
    0853573
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SGER: Impact of hydrogen sulfide toxicity on near shore community structure in the Pacific Northwest region
SGER:硫化氢毒性对太平洋西北地区近岸群落结构的影响
  • 批准号:
    0910196
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了