Advances in Symplectic Geometry and Topology
辛几何和拓扑的进展
基本信息
- 批准号:1306543
- 负责人:
- 金额:$ 4.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-03-01 至 2014-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main objective of this project is to support participants to attend the special session "Advances in Symplectic Geometry and Topology" in the first edition of the Mathematical Congress of the Americas, which will be held in Guanajuato Mexico, August 5-9, 2013. The goal of the Congress is to highlight the excellence of mathematical achievements in the Americas within the context of the international arena, and foster collaborations amongst researchers, students, institutions and mathematical societies in the Americas. Our participants consist of established scholars, mid-career mathematicians as well as PhD students. The aim of the session is to offer an opportunity for interaction amongst researches in different stages of their careers, and to discuss the current developments in the fields of Symplectic Geometry and Topology. More information about the session is posted in http://www.math.umb.edu/~eduardo/MCA2013/Symplectic Geometry and Topology have become ubiquitous branches of Modern Mathematics, and play a central role in several of the latest cutting-edge problems of interest in Mathematics and Physics. Since its early origins in classical Mechanics, Symplectic Geometry has undergone several revolutionary transformations which have helped to systematically understand complex natural phenomena, from dynamical systems to strings. This meeting will expose current research in Symplectic Geometry and Topology to a broad audience in an international arena. We expect to cultivate collaborations between multinational institutions and researchers. We want to influence graduate students, postdocs and junior scholars and give them access to the expertise of several established researchers in the field.
该项目的主要目标是支持与会者参加将于2013年8月5日至9日在墨西哥瓜纳华托举行的第一届美洲数学大会的特别会议“辛几何和拓扑学的进展”。大会的目标是在国际舞台上突出美洲数学成就的卓越之处,并促进美洲研究人员、学生、机构和数学学会之间的合作。我们的参与者包括知名学者、职业生涯中期的数学家以及博士生。会议的目的是为处于其职业生涯不同阶段的研究人员之间提供一个互动的机会,并讨论辛几何和拓扑学领域的当前发展。有关会议的更多信息发布在http://www.math.umb.edu/~eduardo/MCA2013/Symplectic上,几何和拓扑学已成为现代数学的无处不在的分支,并在数学和物理中感兴趣的几个最新前沿问题中发挥核心作用。自早期起源于经典力学以来,辛几何经历了几次革命性的转变,帮助系统地理解了从动力系统到弦的复杂自然现象。这次会议将向国际舞台上的广大观众展示当前辛几何和拓扑学的研究成果。我们希望促进跨国机构和研究人员之间的合作。我们希望影响研究生、博士后和初级学者,让他们能够接触到该领域几位知名研究人员的专业知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eduardo Gonzalez其他文献
J ul 2 00 9 AREA DEPENDENCE IN GAUGED GROMOV-WITTEN THEORY
Jul 2 00 9 测量格罗莫夫维滕理论中的面积依赖性
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Eduardo Gonzalez;C. Woodward - 通讯作者:
C. Woodward
Stroke Among SARS-CoV-2 Vaccine Recipients in Mexico
墨西哥 SARS-CoV-2 疫苗接种者中风
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:9.9
- 作者:
D. López;M. García‐Grimshaw;Sergio Saldívar;L. Hernández;M. M. Saniger;Alonso Gutiérrez;R. Carrillo;H. Valdez;Vanessa Cano;F. Flores;C. Cantú;Ana María Santibáñez;J. Díaz;S. E. Ceballos;L. Murillo;Ana Sepúlveda;Verónica Garcí;Eduardo Gonzalez;R. Cortés;H. Lopez;G. Carbajal;G. Reyes;S. Valdés;A. Arauz - 通讯作者:
A. Arauz
Improving Throughput in SCTP via Dynamic Optimization of Retransmission Bounds
通过动态优化重传界限提高 SCTP 的吞吐量
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
S. McClellan;W. Peng;Eduardo Gonzalez - 通讯作者:
Eduardo Gonzalez
The Unrecognized Role of Platelet Dysfunction in Trauma-Induced Hyperfibrinolysis
- DOI:
10.1016/j.jamcollsurg.2015.07.403 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:
- 作者:
Hunter B. Moore;Ernest E. Moore;Eduardo Gonzalez;Michael P. Chapman;Alex P. Morton;Annie L. Slaughter;Anirban Banerjee;Christopher C. Silliman - 通讯作者:
Christopher C. Silliman
Dynamic intradigital external fixation for proximal interphalangeal joint fracture dislocations.
动态指内外固定治疗近端指间关节骨折脱位。
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:1.9
- 作者:
A. Badia;Felix Riano;Jessica E. Ravikoff;R. Khouri;Eduardo Gonzalez;J. Orbay - 通讯作者:
J. Orbay
Eduardo Gonzalez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eduardo Gonzalez', 18)}}的其他基金
Applications of Equivariant Lifts in Algebraic and Symplectic Geometry
等变升力在代数和辛几何中的应用
- 批准号:
1510518 - 财政年份:2015
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
相似海外基金
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
- 批准号:
2401178 - 财政年份:2024
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
- 批准号:
2305392 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Conference: The Many Interactions between Symplectic and Poisson Geometry
会议:辛几何和泊松几何之间的许多相互作用
- 批准号:
2304750 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Techniques in Symplectic Geometry and Applications
辛几何技术及其应用
- 批准号:
2345030 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Equivariant Symplectic Geometry
合作研究:NSF-BSF:等变辛几何
- 批准号:
2204359 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Shifted Symplectic & Poisson Structures and their Quantisations in the context of Derived Algebraic Geometry
移辛
- 批准号:
2747173 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Studentship
Group actions, symplectic and contact geometry, and applications
群作用、辛几何和接触几何以及应用
- 批准号:
RGPIN-2018-05771 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Symplectic topology and equivariant geometry
辛拓扑和等变几何
- 批准号:
RGPIN-2020-06428 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Group actions and symplectic techniques in Machine Learning and Computational Geometry
机器学习和计算几何中的群作用和辛技术
- 批准号:
RGPIN-2017-06901 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
- 批准号:
RGPIN-2019-05899 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual