Global Problems in Poisson Geometry and Related Structures

泊松几何及相关结构中的全局问题

基本信息

项目摘要

This project aims to study properties of Poisson structures on manifolds as well as of related geometric structures such as Dirac structures, Lie algebroids or generalized complex structures. The project focus primarily on global aspects, drawing on ideas and techniques from Foliation Theory, Equivariant Geometry, Integral Affine Geometry and Symplectic Geometry. These ideas, together with recent results and techniques in Lie groupoid theory developed in the last 10 years, will lead to new methods to attack some long standing fundamental problems in Poisson Geometry, such as the existence of regular Poisson structures, the classification of Poisson manifolds of "compact type", or the existence of normal forms around leaves that go beyond linearization. The project also aims at going beyond the current boundaries of Poisson Geometry by proposing new interactions with the theory of Exterior Differential Systems and with the theory of Integrable Systems.Poisson Geometry lies on the intersection of Mathematical Physics and Geometry. It originates in the mathematical formulation of classical mechanics as the semiclassical limit of quantum mechanics. The field developed rapidly in the last 20 years, stimulated by the connections with a large number of areas in mathematics and mathematical physics, including differential geometry and Lie theory, quantization, noncommutative geometry, representation theory and quantum groups, geometric mechanics and integrable systems. This project shares this flavor of Poisson geometry, aiming not only at a deeper understanding of geometric properties of Poisson brackets, but also at developing new applications in other fields of Mathematics.
本课题旨在研究流形上泊松结构的性质,以及相关几何结构如狄拉克结构、李代数群或广义复杂结构的性质。该项目主要关注全局方面,借鉴叶理理论、等变几何、积分仿射几何和辛几何的思想和技术。这些想法,加上李群样理论在过去十年中发展起来的最新成果和技术,将导致新的方法来解决泊松几何中一些长期存在的基本问题,如规则泊松结构的存在,“紧型”泊松流形的分类,或叶周围超越线性化的正规形式的存在。该项目还旨在通过提出与外微分系统理论和可积系统理论的新相互作用,超越泊松几何的现有边界。泊松几何是数学物理和几何的交叉学科。它起源于经典力学的数学表述,作为量子力学的半经典极限。近20年来,由于与微分几何和李论、量子化、非交换几何、表示论和量子群、几何力学和可积系统等数学和数学物理领域的联系,该领域得到了迅速发展。这个项目分享了泊松几何的味道,不仅旨在更深入地理解泊松括号的几何性质,而且还旨在开发其他数学领域的新应用。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Riemannian metrics on differentiable stacks
可微栈上的黎曼度量
  • DOI:
    10.1007/s00209-018-2154-6
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    del Hoyo, Matias;Fernandes, Rui Loja
  • 通讯作者:
    Fernandes, Rui Loja
Associativity and integrability
结合性和可积性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rui Loja Fernandes其他文献

Stability of symplectic leaves
  • DOI:
    10.1007/s00222-010-0235-1
  • 发表时间:
    2010-02-05
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Marius Crainic;Rui Loja Fernandes
  • 通讯作者:
    Rui Loja Fernandes
Integrability of Poisson Brackets
泊松括号的可积性
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Crainic;Rui Loja Fernandes
  • 通讯作者:
    Rui Loja Fernandes
Cosymplectic groupoids
  • DOI:
    10.1016/j.geomphys.2023.104928
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rui Loja Fernandes;David Iglesias Ponte
  • 通讯作者:
    David Iglesias Ponte

Rui Loja Fernandes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rui Loja Fernandes', 18)}}的其他基金

Symplectic groupoids and quantization of Poisson manifolds
辛群群和泊松流形的量化
  • 批准号:
    2303586
  • 财政年份:
    2023
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant
Summer School and Conference: Poisson 2022
暑期学校和会议:泊松 2022
  • 批准号:
    2210602
  • 财政年份:
    2022
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant
Geometric Structures on Lie Groupoids and their Applications
李群形上的几何结构及其应用
  • 批准号:
    2003223
  • 财政年份:
    2020
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant
Poisson Manifolds of Compact Types and Geometric Structures on Stacks
紧凑型泊松流形和堆栈上的几何结构
  • 批准号:
    1710884
  • 财政年份:
    2017
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant
Deformations and Rigidity in Poisson Geometry
泊松几何中的变形和刚度
  • 批准号:
    1405671
  • 财政年份:
    2014
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant
Poisson 2014: Summer School and Conference on Poisson Geometry in Mathematics and Physics, July 28-August 8, 2014
Poisson 2014:数学和物理泊松几何暑期学校和会议,2014年7月28日至8月8日
  • 批准号:
    1405965
  • 财政年份:
    2014
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant
Gone Fishing: A series of meetings in Poisson Geometry
钓鱼:泊松几何的一系列会议
  • 批准号:
    1342531
  • 财政年份:
    2013
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant

相似海外基金

Problems in Ramsey theory
拉姆齐理论中的问题
  • 批准号:
    2582036
  • 财政年份:
    2025
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Studentship
Understanding the role of trauma in alcohol and other drug-related problems
了解创伤在酒精和其他毒品相关问题中的作用
  • 批准号:
    DP240101473
  • 财政年份:
    2024
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Discovery Projects
Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
  • 批准号:
    FT230100154
  • 财政年份:
    2024
  • 资助金额:
    $ 21.73万
  • 项目类别:
    ARC Future Fellowships
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
  • 批准号:
    2348475
  • 财政年份:
    2024
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant
Duration models related problems in econometrics
计量经济学中的持续时间模型相关问题
  • 批准号:
    23K25504
  • 财政年份:
    2024
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
  • 批准号:
    2400014
  • 财政年份:
    2024
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
  • 批准号:
    2349382
  • 财政年份:
    2024
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了