Poisson Manifolds of Compact Types and Geometric Structures on Stacks
紧凑型泊松流形和堆栈上的几何结构
基本信息
- 批准号:1710884
- 负责人:
- 金额:$ 17.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Poisson geometry lies at the intersection of mathematical physics and geometry. Its origins go back to the mathematical formulation of classical and quantum mechanics, where the notion of a Poisson bracket emerged. In more recent times, the study of spaces equipped with these brackets, called Poisson manifolds, developed into a branch of geometry, with important applications to other areas of mathematics, as well as other fields. For example, one can find Poisson brackets in the formulation of dynamics within field theory in high-energy physics, and in various models for population and evolutionary dynamics within biology. Understanding global properties of these spaces is a challenging problem due to the convergence of some unusual mathematical aspects: one finds a special type of geometry in certain directions, so that some directions in a Poisson manifold are distinguished from others; as well, some points in the space possess a rich set of local symmetries not present at other locations. This project aims to study global geometric and topological properties of Poisson manifolds, arguably the most central issue in modern day Poisson geometry. This project includes collaborations with various researchers in Poisson geometry working in Europe and South America, and aims to promote interaction between mathematicians, physicists and groups with different points of view working on related areas, through a UIUC seminar and through a series of regional conferences in Poisson geometry.In this project, global aspects of Poisson structures and related geometric structures are studied, primarily from the perspective of Lie groupoid theory and drawing on ideas and techniques from foliation theory, equivariant geometry, and from symplectic and integral affine geometry. These new ideas, together with results and techniques developed in the last decade, should lead to new methods to attack some long standing fundamental problems in Poisson geometry, such as the existence of regular Poisson structures, the classification of Poisson manifolds of compact type, and the existence of normal forms around symplectic leaves. The project also aims at breaking the current boundaries of Poisson geometry by advancing new interactions with other mathematical areas, such as exterior differential systems, integrable systems and the theory of geometric stacks.
泊松几何位于数学物理学和几何学的交叉点。它的起源可以追溯到经典力学和量子力学的数学公式,在那里出现了泊松括号的概念。在更近的时代,研究配备有这些括号的空间,称为泊松流形,发展成为几何学的一个分支,在数学的其他领域以及其他领域有重要的应用。例如,我们可以在高能物理学的场论中的动力学公式中找到泊松括号,以及在生物学中的各种种群和进化动力学模型中找到泊松括号。理解这些空间的全局性质是一个具有挑战性的问题,因为一些不寻常的数学方面的收敛:人们发现在某些方向上的特殊类型的几何,使得泊松流形中的某些方向与其他方向不同;以及,空间中的某些点拥有丰富的局部对称性,而这些局部对称性在其他位置不存在。这个项目旨在研究泊松流形的整体几何和拓扑性质,可以说是现代泊松几何中最核心的问题。该项目包括与欧洲和南美洲的泊松几何研究人员的合作,旨在通过UIUC研讨会和一系列泊松几何区域会议,促进数学家,物理学家和相关领域工作的不同观点团体之间的互动。在该项目中,泊松结构和相关几何结构的全球方面进行了研究,主要从李群胚理论的角度,并借鉴了叶理理论,等变几何,辛和积分仿射几何的思想和技术。这些新的想法,连同在过去十年中开发的结果和技术,应导致新的方法来攻击一些长期存在的基本问题,在泊松几何,如存在的定期泊松结构,分类的泊松流形的紧凑型,并存在正常形式周围辛叶。该项目还旨在通过推进与其他数学领域的新的相互作用,如外部微分系统,可积系统和几何堆栈理论,打破泊松几何的当前边界。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genus Integration, Abelianization, and Extended Monodromy
属整合、阿贝尔化和扩展单峰
- DOI:10.1093/imrn/rnz133
- 发表时间:2019
- 期刊:
- 影响因子:1
- 作者:Contreras, Ivan;Fernandes, Rui Loja
- 通讯作者:Fernandes, Rui Loja
On deformations of compact foliations
关于致密叶状结构的变形
- DOI:10.1090/proc/14567
- 发表时间:2019
- 期刊:
- 影响因子:1
- 作者:del Hoyo, Matias;Fernandes, Rui Loja
- 通讯作者:Fernandes, Rui Loja
Poisson manifolds of compact types (PMCT 1)
紧凑型泊松流形 (PMCT 1)
- DOI:10.1515/crelle-2017-0006
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Crainic, Marius;Fernandes, Rui Loja;Martínez Torres, David
- 通讯作者:Martínez Torres, David
Associativity and integrability
结合性和可积性
- DOI:10.1090/tran/8073
- 发表时间:2020
- 期刊:
- 影响因子:1.3
- 作者:Fernandes, Rui Loja;Michiels, Daan
- 通讯作者:Michiels, Daan
The classifying Lie algebroid of a geometric structure II: G-structures with connection
几何结构的李代数体分类II:有连接的G结构
- DOI:10.1007/s40863-021-00272-x
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Fernandes, Rui Loja;Struchiner, Ivan
- 通讯作者:Struchiner, Ivan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rui Loja Fernandes其他文献
Stability of symplectic leaves
- DOI:
10.1007/s00222-010-0235-1 - 发表时间:
2010-02-05 - 期刊:
- 影响因子:3.600
- 作者:
Marius Crainic;Rui Loja Fernandes - 通讯作者:
Rui Loja Fernandes
Integrability of Poisson Brackets
泊松括号的可积性
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
M. Crainic;Rui Loja Fernandes - 通讯作者:
Rui Loja Fernandes
Cosymplectic groupoids
- DOI:
10.1016/j.geomphys.2023.104928 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:
- 作者:
Rui Loja Fernandes;David Iglesias Ponte - 通讯作者:
David Iglesias Ponte
Rui Loja Fernandes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rui Loja Fernandes', 18)}}的其他基金
Symplectic groupoids and quantization of Poisson manifolds
辛群群和泊松流形的量化
- 批准号:
2303586 - 财政年份:2023
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Summer School and Conference: Poisson 2022
暑期学校和会议:泊松 2022
- 批准号:
2210602 - 财政年份:2022
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Geometric Structures on Lie Groupoids and their Applications
李群形上的几何结构及其应用
- 批准号:
2003223 - 财政年份:2020
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Deformations and Rigidity in Poisson Geometry
泊松几何中的变形和刚度
- 批准号:
1405671 - 财政年份:2014
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Poisson 2014: Summer School and Conference on Poisson Geometry in Mathematics and Physics, July 28-August 8, 2014
Poisson 2014:数学和物理泊松几何暑期学校和会议,2014年7月28日至8月8日
- 批准号:
1405965 - 财政年份:2014
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Gone Fishing: A series of meetings in Poisson Geometry
钓鱼:泊松几何的一系列会议
- 批准号:
1342531 - 财政年份:2013
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Global Problems in Poisson Geometry and Related Structures
泊松几何及相关结构中的全局问题
- 批准号:
1308472 - 财政年份:2013
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Compact Hyper-Kahler manifolds and Lagrangian fibrations
职业:紧凑超卡勒流形和拉格朗日纤维
- 批准号:
2144483 - 财政年份:2022
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
Research on the relationship between canonical metrics and deformations of complex structures on compact Kahler manifolds
紧卡勒流形上复杂结构正则度量与变形关系研究
- 批准号:
22K03316 - 财政年份:2022
- 资助金额:
$ 17.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pluripotential Theory and Random Geometry on Compact Complex Manifolds
紧复流形上的多势理论和随机几何
- 批准号:
2154273 - 财政年份:2022
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Ricci flow on compact Kahler manifolds
紧凑型 Kahler 流形上的 Ricci 流
- 批准号:
RGPAS-2021-00037 - 财政年份:2022
- 资助金额:
$ 17.4万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Ricci flow on compact Kahler manifolds
紧凑型 Kahler 流形上的 Ricci 流
- 批准号:
RGPIN-2021-03589 - 财政年份:2022
- 资助金额:
$ 17.4万 - 项目类别:
Discovery Grants Program - Individual
Ricci flow on compact Kahler manifolds
紧凑型 Kahler 流形上的 Ricci 流
- 批准号:
RGPIN-2021-03589 - 财政年份:2021
- 资助金额:
$ 17.4万 - 项目类别:
Discovery Grants Program - Individual
Compact Born Manifolds
紧凑型生流形
- 批准号:
534983-2019 - 财政年份:2021
- 资助金额:
$ 17.4万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Ricci flow on compact Kahler manifolds
紧凑型 Kahler 流形上的 Ricci 流
- 批准号:
RGPAS-2021-00037 - 财政年份:2021
- 资助金额:
$ 17.4万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Classifications of compact complex manifolds admitting non-isomorphic endomorphisms
承认非同构自同态的紧复流形的分类
- 批准号:
20K03518 - 财政年份:2020
- 资助金额:
$ 17.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Compact Born Manifolds
紧凑型生流形
- 批准号:
534983-2019 - 财政年份:2020
- 资助金额:
$ 17.4万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




