Summer School and Conference: Poisson 2022
暑期学校和会议:泊松 2022
基本信息
- 批准号:2210602
- 负责人:
- 金额:$ 3.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Poisson 2022 is the 12th in a series of biennial international conferences and schools in a subfield of mathematics known as Poisson geometry. The 2022 event includes an Advanced School at the Centre de Recerca Matematica, Barcelona, Spain, July 18-22, 2022 and a Conference at the headquarters of the Spanish National Research Council (CSIC), Madrid, Spain, July 25-29, 2022. Poisson geometry is an area originally inspired by physics, which has found a huge number of applications both in mathematics and other areas of science. This activity will bring together a diverse group of mathematicians to explore the modern interplay between Poisson geometry and its many applications in different fields. The school will consist of four mini-courses given by leading junior and senior mathematicians. It will introduce the participants, mostly early-career mathematicians, to a broad spectrum of ideas on the forefront of modern research in Poisson geometry. The conference program will feature 21 talks given by leading experts, covering the most active topics in Poisson geometry and its applications. The goal of these activities is to make recent developments in the field accessible to all participants, to broaden their perspective on major areas of current research, and to create a stimulating environment in which they can share ideas and begin lasting interdisciplinary collaborations. The purpose of the award is to support the participation of US-based researchers in this event.This meeting aims to promote interaction between mathematicians, physicists, and groups working on related areas from different points of view. The Conference is the forum where the most significant recent advances in the area are announced and discussed, and the potential future directions of the subject are addressed. Topics cover a wide range of areas arising from Poisson brackets and its applications, including symplectic, Dirac, generalized complex and related structures, Lie algebroids and Lie groupoids, geometric mechanics, Poisson algebras and Poisson varieties, cluster algebras, integrable systems, quantization and higher structures, non-commutative geometry, quantum groups and representation theory. The School has a strong training component, including two introductory courses in Poisson Geometry and Foliation Theory, and two more advanced level courses in Geometric Quantization and Wonderful Compactifications. During the opening of the conference, the winner(s) of the Andre Lichnerowicz Prize in Poisson geometry will be announced. The prize is awarded for notable contributions to Poisson geometry and its applications, to researchers who completed their doctorates at most eight years before the year of the Conference. More information about the school is at https://www.crm.cat/2022-advanced-school-poisson/ and conference information is at https://www.icmat.es/congresos/2022/poisson/index.php.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
泊松2022是一系列两年一度的国际会议和学校在数学的子领域称为泊松几何的第12届。2022年的活动包括2022年7月18日至22日在西班牙巴塞罗那的Centre de Recerca Matematica举办的高级学校,以及2022年7月25日至29日在西班牙马德里的西班牙国家研究理事会(CSIC)总部举行的会议。泊松几何是一个最初受到物理学启发的领域,它在数学和其他科学领域都有大量的应用。这项活动将汇集不同的数学家群体,探索泊松几何及其在不同领域的许多应用之间的现代相互作用。学校将包括四个迷你课程由领先的初级和高级数学家。它将向参与者,主要是早期职业数学家,介绍泊松几何现代研究前沿的广泛思想。会议计划将有21个讲座由领先的专家给出,涵盖泊松几何及其应用中最活跃的主题。这些活动的目标是使所有参与者都能了解该领域的最新发展,拓宽他们对当前研究主要领域的看法,并创造一个令人鼓舞的环境,使他们能够分享想法,开始持久的跨学科合作。该奖项的目的是支持美国研究人员参与该活动。该会议旨在促进数学家,物理学家和从不同角度从事相关领域工作的团体之间的互动。会议是宣布和讨论该领域最重要的最新进展以及探讨该主题未来可能方向的论坛。主题涵盖了广泛的领域所产生的泊松括号及其应用,包括辛,狄拉克,广义复杂和相关的结构,李代数和李群胚,几何力学,泊松代数和泊松品种,集群代数,可积系统,量子化和更高的结构,非交换几何,量子群和表示论。学校有一个强大的培训组成部分,包括泊松几何和叶理论的两个入门课程,以及几何量化和奇妙紧化的两个更高级的课程。 在会议开幕式上,将宣布泊松几何学安德烈·利希内洛维奇奖的赢家。该奖项是颁发给显着的贡献泊松几何及其应用,研究人员谁完成了他们的博士学位在最多八年前的一年会议。有关学校的更多信息请访问https://www.crm.cat/2022-advanced-school-poisson/,会议信息请访问https://www.icmat.es/congresos/2022/poisson/index.php.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rui Loja Fernandes其他文献
Stability of symplectic leaves
- DOI:
10.1007/s00222-010-0235-1 - 发表时间:
2010-02-05 - 期刊:
- 影响因子:3.600
- 作者:
Marius Crainic;Rui Loja Fernandes - 通讯作者:
Rui Loja Fernandes
Integrability of Poisson Brackets
泊松括号的可积性
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
M. Crainic;Rui Loja Fernandes - 通讯作者:
Rui Loja Fernandes
Cosymplectic groupoids
- DOI:
10.1016/j.geomphys.2023.104928 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:
- 作者:
Rui Loja Fernandes;David Iglesias Ponte - 通讯作者:
David Iglesias Ponte
Rui Loja Fernandes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rui Loja Fernandes', 18)}}的其他基金
Symplectic groupoids and quantization of Poisson manifolds
辛群群和泊松流形的量化
- 批准号:
2303586 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Geometric Structures on Lie Groupoids and their Applications
李群形上的几何结构及其应用
- 批准号:
2003223 - 财政年份:2020
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Poisson Manifolds of Compact Types and Geometric Structures on Stacks
紧凑型泊松流形和堆栈上的几何结构
- 批准号:
1710884 - 财政年份:2017
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Deformations and Rigidity in Poisson Geometry
泊松几何中的变形和刚度
- 批准号:
1405671 - 财政年份:2014
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Poisson 2014: Summer School and Conference on Poisson Geometry in Mathematics and Physics, July 28-August 8, 2014
Poisson 2014:数学和物理泊松几何暑期学校和会议,2014年7月28日至8月8日
- 批准号:
1405965 - 财政年份:2014
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Gone Fishing: A series of meetings in Poisson Geometry
钓鱼:泊松几何的一系列会议
- 批准号:
1342531 - 财政年份:2013
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Global Problems in Poisson Geometry and Related Structures
泊松几何及相关结构中的全局问题
- 批准号:
1308472 - 财政年份:2013
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
相似海外基金
Rossbypalooza 2024: A Student-led Summer School on Climate and Extreme Events Conference; Chicago, Illinois; July 22-August 2, 2024
Rossbypalooza 2024:学生主导的气候和极端事件暑期学校会议;
- 批准号:
2406927 - 财政年份:2024
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
- 批准号:
2406732 - 财政年份:2024
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Conference: Scientific Assessment of the McMurdo Dry Valleys Ecosystem: Environmental Stewardship in a Time of Dynamic Change
会议:麦克默多干谷生态系统的科学评估:动态变化时期的环境管理
- 批准号:
2409327 - 财政年份:2024
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
- 批准号:
2412346 - 财政年份:2024
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Conference: 2024 Mammalian Synthetic Biology Workshop
会议:2024年哺乳动物合成生物学研讨会
- 批准号:
2412586 - 财政年份:2024
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Travel: NSF Student Travel Grant for 2024 ACM/IEEE International Conference on Software Engineering
旅行:2024 年 ACM/IEEE 软件工程国际会议 NSF 学生旅行补助金
- 批准号:
2413092 - 财政年份:2024
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant














{{item.name}}会员




