Deformations and Rigidity in Poisson Geometry

泊松几何中的变形和刚度

基本信息

项目摘要

AbstractAward: DMS 1405671, Principal Investigator: Ioan-Tiberiu MarcutThe Hamiltonian description of classical mechanics describes the state of a moving particle by recording its position and momentum as two coordinates, and by introducing a relationship between those coordinates through the Hamiltonian function H, a form of total energy that originated as the sum of kinetic energy and potential energy. The physical property of the conservation energy is then reported mathematically as the property that the value of the Hamiltonian function H does not change as the system evolves, but H determines that evolution through a system of differential equations that is equivalent to Newton's law that F = ma. The Poisson geometry of this proposal's title is a version of the geometry underlying Hamiltonian mechanics that is well-adapted to the needs of quantum mechanics.Projects supported by this award are focused on deformation and rigidity properties of Poisson structures. A rigidity result established by the principal investigator in earlier work is one of the ingredients for new work; another ingredient is an explicit construction of local groupoids which can be applied to prove results such as a local normal form around Poisson transversals.
经典力学的哈密顿描述通过将运动粒子的位置和动量记录为两个坐标,并通过哈密顿函数H引入这些坐标之间的关系,哈密顿函数H是总能量的一种形式,起源于动能和势能的总和。然后,守恒能量的物理性质在数学上被报告为这样的性质,即哈密顿函数H的值不随着系统的演化而改变,但H通过等同于牛顿定律F=ma的微分方程组来确定系统的演化。该提案标题的泊松几何是哈密顿力学基础上的几何学的一个版本,它很好地适应了量子力学的需要。该奖项支持的项目集中在泊松结构的变形和刚性特性上。主要研究者在以前的工作中建立的刚性结果是新工作的组成部分之一;另一个组成部分是局部群胚的显式构造,它可用于证明结果,如Poisson断面周围的局部范式。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genus Integration, Abelianization, and Extended Monodromy
属整合、阿贝尔化和扩展单峰
Riemannian metrics on differentiable stacks
可微栈上的黎曼度量
  • DOI:
    10.1007/s00209-018-2154-6
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    del Hoyo, Matias;Fernandes, Rui Loja
  • 通讯作者:
    Fernandes, Rui Loja
On deformations of compact foliations
关于致密叶状结构的变形
Associativity and integrability
结合性和可积性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rui Loja Fernandes其他文献

Stability of symplectic leaves
  • DOI:
    10.1007/s00222-010-0235-1
  • 发表时间:
    2010-02-05
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Marius Crainic;Rui Loja Fernandes
  • 通讯作者:
    Rui Loja Fernandes
Integrability of Poisson Brackets
泊松括号的可积性
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Crainic;Rui Loja Fernandes
  • 通讯作者:
    Rui Loja Fernandes
Cosymplectic groupoids
  • DOI:
    10.1016/j.geomphys.2023.104928
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rui Loja Fernandes;David Iglesias Ponte
  • 通讯作者:
    David Iglesias Ponte

Rui Loja Fernandes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rui Loja Fernandes', 18)}}的其他基金

Symplectic groupoids and quantization of Poisson manifolds
辛群群和泊松流形的量化
  • 批准号:
    2303586
  • 财政年份:
    2023
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Summer School and Conference: Poisson 2022
暑期学校和会议:泊松 2022
  • 批准号:
    2210602
  • 财政年份:
    2022
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Geometric Structures on Lie Groupoids and their Applications
李群形上的几何结构及其应用
  • 批准号:
    2003223
  • 财政年份:
    2020
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Poisson Manifolds of Compact Types and Geometric Structures on Stacks
紧凑型泊松流形和堆栈上的几何结构
  • 批准号:
    1710884
  • 财政年份:
    2017
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Poisson 2014: Summer School and Conference on Poisson Geometry in Mathematics and Physics, July 28-August 8, 2014
Poisson 2014:数学和物理泊松几何暑期学校和会议,2014年7月28日至8月8日
  • 批准号:
    1405965
  • 财政年份:
    2014
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Gone Fishing: A series of meetings in Poisson Geometry
钓鱼:泊松几何的一系列会议
  • 批准号:
    1342531
  • 财政年份:
    2013
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Global Problems in Poisson Geometry and Related Structures
泊松几何及相关结构中的全局问题
  • 批准号:
    1308472
  • 财政年份:
    2013
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant

相似海外基金

Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
  • 批准号:
    2400191
  • 财政年份:
    2024
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
  • 批准号:
    2349566
  • 财政年份:
    2024
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
  • 批准号:
    2339110
  • 财政年份:
    2024
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Continuing Grant
THE ROLE OF MEDIUM SPINY NEURONS IN SLEEP DEPRIVATION-INDUCED COGNITIVE RIGIDITY.
中型棘神经元在睡眠剥夺引起的认知僵化中的作用。
  • 批准号:
    10656057
  • 财政年份:
    2023
  • 资助金额:
    $ 14.6万
  • 项目类别:
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
  • 批准号:
    2305411
  • 财政年份:
    2023
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
  • 批准号:
    DE230100415
  • 财政年份:
    2023
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Discovery Early Career Researcher Award
Pioneering arithmetic topology around cyclotomic units and application to profinite rigidity
围绕分圆单元的开创性算术拓扑及其在有限刚度上的应用
  • 批准号:
    23K12969
  • 财政年份:
    2023
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Constraints, Rigidity, and Risk in Global Supply Chains
全球供应链的约束、刚性和风险
  • 批准号:
    2315629
  • 财政年份:
    2023
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Singularities and rigidity in geometric evolution equations
几何演化方程中的奇异性和刚性
  • 批准号:
    2304684
  • 财政年份:
    2023
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Harmonic Maps, Geometric Rigidity, and Non-Abelian Hodge Theory
调和映射、几何刚性和非阿贝尔霍奇理论
  • 批准号:
    2304697
  • 财政年份:
    2023
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了