Quantum Gases in Quantum Hall Regime and in Spin-Orbit Coupled Regime
量子霍尔体系和自旋轨道耦合体系中的量子气体
基本信息
- 批准号:1309615
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThe Division of Materials Research and the Physics Division contribute funds to this award. It supports theoretical research and education to study two novel phenomena in a system of atoms which are trapped by light and are very close to the absolute zero of temperature. These phenomena, the quantum Hall effect and spin-orbit coupling effects, were first discovered in a two dimensional liquid of electrons trapped in an artificial semiconductor structure in a perpendicular magnetic field and in the spectrum of light emitted by atoms. The electrons in Quantum Hall states may organize themselves in a remarkable way enabling the possibility of performing computing operations by manipulating quantum mechanical states, known as topological quantum computing. Electrons have an intrinsic property called spin where it appears as if the electron spins like a tiny top. The spin of the electron is also connected to its intrinsic magnetic properties; it behaves as though it was a tiny bar magnet. As an electron moves around the nucleus of an atom or through a solid the theory of relativity says that it will experience a magnetic field from the atomic cores in the lattice. The interaction of the electron with this magnetic field gives rise to the spin-orbit interaction. Much like the quantum Hall effect, the spin-orbit interaction in some materials gives rise to perfectly conducting states on the surfaces and edges of the material. Unlike common copper wires, these metallic states can carry currents without dissipation. This holds promise for new low-energy electronic device technologies. To create such devices requires the control to create the right effective quantum-Hall state in a spin-orbit coupled material, which is very challenging. Ultra-cold atom systems have the potential to meet this challenge because interactions can be tuned on the fly in real experiments. So, ultra-cold atoms offer a new platform for studying these novel phenomena. The research supported by this award focuses on finding new ways to realize quantum Hall states and novel spin-orbit states, but in systems composed of ultra-cold atoms instead of electrons. In the case of quantum Hall systems, the P.I. aims to first create a quantum Hall state and then to exploit the physics of cold atom systems to "bind" cold atoms together making bosons to create long sought bosonic quantum Hall states. Electrons and many atoms are fermions. In contrast to fermions, more than one boson can occupy the same quantum state. Strong electrostatic repulsion between electrons makes this process difficult in electrons in artificial semiconductiong materials and other solids, but it is possible in neutral atoms. This offers a new way to construct a wide range of quantum Hall states that have no analog in materials. This award also funds projects that study interaction effects on spin-orbit coupled systems. The goal is to understand how interactions affect the properties of these system, and to understand the mechanisms for creating new states of matter. In addition to producing systems that have analogs in solid-state systems, the research supported by this award will also study new quantum states of very high spin particles that have no solid-state analogs. Electrons are fermions that have two "spin" components. Even with just two varieties, electrons are able to produce the immense diversity of condensed matter phenomena in this world. In the case of cold atoms, there are many fermions and bosons with very high spins, some of them, like Dysprosium, have spins five times that of an electron. The condensed matter of ultra-cold large spin atoms opens a new frontier rich with new phenomena.These projects will provide training for students and postdocs in a wide range of theoretical techniques, and will help them develop expertise in cold atom and condensed matter physics, superfluid physics, and quantum Hall phenomena.TECHNICAL SUMMARYThe Division of Materials Research and the Physics Division contribute funds to this award, which supports theoretical research and education to investigate new states of quantum matter that are unique to dilute quantum gases of atoms and are at the same time of fundamental significance in condensed matter. The research focuses on two areas: Quantum Hall states and large spin particles. It will address the longstanding issue of how to achieve quantum Hall states in cold gases, and will explore the novel physics of high spin bosons and fermions. There are five projects: 1. Creating bosonic quantum Hall states from filled fermionic Landau levels; 2. Realizing quantum Hall states with synthetic gauge fields; 3. Investigating spin-orbit effects in strongly repulsive 1D Fermi gases; 4. Creating synthetic gauge fields for large spin particles; 5.Exploring novel Quantum Hall states of large spin atoms. Some of these projects are in collaboration with experimental groups. The research will help realize fermionic and bosonic quantum Hall states in cold atoms, including those with non-abelian statistics that are crucial for topological quantum computation. Some of the states to be studied in this project have been predicted for an electron gas but have never been confirmed; while others such as those for large-spin particles are distinctly new states that have no electronic analogs. The study of spin-orbit effects in strongly repulsive Fermi gases will help uncover new phenomena arising from the interplay between strong interaction and spin-orbit coupling, an important area that has so far been little studied. These projects will provide training for students and postdocs in a wide range of theoretical techniques, and will help them develop expertise in cold atom and condensed matter physics, superfluid physics, and quantum Hall phenomena.
材料研究部和物理部为该奖项提供资金。它支持理论研究和教育,以研究被光捕获并且非常接近绝对零度的原子系统中的两种新现象。这些现象,即量子霍尔效应和自旋轨道耦合效应,首次在垂直磁场中捕获在人工半导体结构中的二维电子液体和原子发射的光谱中被发现。量子霍尔态中的电子可以以一种非凡的方式组织自己,从而可以通过操纵量子力学态来执行计算操作,称为拓扑量子计算。电子有一种叫做自旋的固有特性,它看起来就像一个小陀螺。电子的自旋也与其固有的磁性有关;它的行为就像一个小条形磁铁。当一个电子绕着原子核运动或穿过固体时,相对论认为它会经历晶格中原子核的磁场。电子与磁场的相互作用产生自旋轨道相互作用。就像量子霍尔效应一样,一些材料中的自旋轨道相互作用会在材料的表面和边缘产生完美的导电状态。与普通铜线不同,这些金属态可以不损耗地承载电流。这为新的低能耗电子设备技术带来了希望。要制造这样的器件,需要在自旋轨道耦合材料中控制产生正确的有效量子霍尔态,这是非常具有挑战性的。超冷原子系统有可能应对这一挑战,因为可以在实际实验中动态调整相互作用。因此,超冷原子为研究这些新现象提供了一个新的平台。该奖项支持的研究重点是寻找实现量子霍尔态和新型自旋轨道态的新方法,但在由超冷原子而不是电子组成的系统中。以量子霍尔系统为例,P.I.的目标是首先创造一个量子霍尔态,然后利用冷原子系统的物理学将冷原子“绑定”在一起,制造玻色子,以创造长期寻求的玻色子量子霍尔态。电子和许多原子都是费米子。与费米子相反,不止一个玻色子可以占据相同的量子态。电子之间强烈的静电斥力使得这一过程在人造半导体材料和其他固体中的电子中很困难,但在中性原子中是可能的。这为构建材料中没有类似物的大范围量子霍尔态提供了一种新方法。该奖项还资助研究自旋轨道耦合系统相互作用效应的项目。目标是了解相互作用如何影响这些系统的特性,并了解创造物质新状态的机制。除了生产在固态系统中具有类似物的系统外,该奖项支持的研究还将研究没有固态类似物的高自旋粒子的新量子态。电子是有两个“自旋”成分的费米子。即使只有两种,电子也能产生这个世界上巨大的凝聚态现象的多样性。在冷原子的情况下,有许多费米子和玻色子具有非常高的自旋,其中一些,比如镝,自旋是电子的五倍。超冷大自旋原子的凝聚态物质,开辟了一个充满新现象的新领域。这些项目将为学生和博士后提供广泛的理论技术培训,并将帮助他们在冷原子和凝聚态物理、超流体物理和量子霍尔现象方面发展专业知识。技术概述材料研究部和物理部为该奖项提供资金,支持理论研究和教育,以研究量子物质的新状态,这些状态是原子的稀释量子气体所特有的,同时在凝聚态中具有根本意义。研究主要集中在两个方面:量子霍尔态和大自旋粒子。它将解决如何在冷气体中实现量子霍尔态的长期问题,并将探索高自旋玻色子和费米子的新物理学。有五个项目:1.;从充满的费米子朗道能级创建玻色子量子霍尔态2. 利用合成规范场实现量子霍尔态3. 强排斥性一维费米气体自旋轨道效应的研究4. 为大自旋粒子创建合成规范场;5.探索大自旋原子的新型量子霍尔态。其中一些项目是与实验小组合作的。该研究将有助于实现冷原子中的费米子和玻色子量子霍尔态,包括那些对拓扑量子计算至关重要的非阿贝尔统计量。在这个项目中要研究的一些状态已经被预测为电子气体,但从未得到证实;而其他的,比如大自旋粒子,则是明显没有电子类似物的新状态。强排斥性费米气体中自旋轨道效应的研究将有助于揭示强相互作用和自旋轨道耦合之间相互作用产生的新现象,这是迄今为止研究较少的一个重要领域。这些项目将为学生和博士后提供广泛的理论技术培训,并将帮助他们在冷原子和凝聚态物理、超流体物理和量子霍尔现象方面发展专业知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tin-Lun Ho其他文献
The Hydrodynamic Equations of Superfluid Mixtures in Magnetic Traps
- DOI:
10.1023/a:1022285510305 - 发表时间:
1998-06-01 - 期刊:
- 影响因子:1.400
- 作者:
Tin-Lun Ho;V. B. Shenoy - 通讯作者:
V. B. Shenoy
Tin-Lun Ho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tin-Lun Ho', 18)}}的其他基金
FUNDAMENTAL ISSUES OF DEGENERATE QUANTUM GASES
简并量子气体的基本问题
- 批准号:
0907366 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
The Physics of Ultra-Cold Quantum Gases
超冷量子气体物理学
- 批准号:
0705989 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Spinor Bose Condensate and Multi-Component Quantum Gases
旋量玻色凝聚和多组分量子气体
- 批准号:
0555576 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Continuing grant
CAREER: Novel Excitations in Unconventional Ordered Phases of Correlated Electron Systems
职业:相关电子系统非常规有序相中的新激发
- 批准号:
9983731 - 财政年份:2000
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Quantum Gases in Optical and Magnetic Confinement
光和磁约束中的量子气体
- 批准号:
9807284 - 财政年份:1998
- 资助金额:
$ 30万 - 项目类别:
Continuing grant
Theoretical Condensed Matter Physics: Quasicrystals and Superfluid Hellium-Three
理论凝聚态物理:准晶体和超流氦三
- 批准号:
8717574 - 财政年份:1988
- 资助金额:
$ 30万 - 项目类别:
Continuing grant
相似海外基金
Increasing farming competitiveness, profitability and resilience by removal of greenhouse gases (R-LEAF): follow-on funding
通过消除温室气体提高农业竞争力、盈利能力和复原力 (R-LEAF):后续资金
- 批准号:
10090632 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
RESEARCH PROPOSAL What is your project title? Development of additive manufactured polymeric seals for low molecular weight gases
研究计划 您的项目名称是什么?
- 批准号:
2908868 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Studentship
LIB Sparks - Gases, sparks and flames - a numerical study of lithium-ion battery failure in closed spaces and its mitigation
LIB Sparks - 气体、火花和火焰 - 封闭空间内锂离子电池故障及其缓解的数值研究
- 批准号:
EP/Y027639/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
PriSciTemp: Primary spectrometric thermometry for gases
PriSciTemp:气体的初级光谱测温
- 批准号:
10074890 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
BioPro - Low emission protein production from anaerobic digestion gases
BioPro - 通过厌氧消化气体生产低排放蛋白质
- 批准号:
10077731 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Spectroscopic measurements of volcanic gases in volcanic environments
火山环境中火山气体的光谱测量
- 批准号:
2884080 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Time-Dependent Hydrodynamics in Uniform Fermi Gases
均匀费米气体中的瞬态流体动力学
- 批准号:
2307107 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: OPP-PRF: Assessing the Contribution of Permafrost-derived Trace Gases in Greenhouse Warming since the Last Glacial Maximum
博士后奖学金:OPP-PRF:评估自末次盛冰期以来永久冻土衍生的微量气体对温室变暖的贡献
- 批准号:
2317931 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Study on the characteristics of trace gases in the Venusian atmosphere using satellite solar occultation measurements and ground-based high-resolution spectroscopy
利用卫星掩星测量和地面高分辨率光谱研究金星大气中痕量气体的特征
- 批准号:
23K03480 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of 320x256 pixel metamaterial infrared image sensors for visualizing invisible gases
开发用于可视化不可见气体的 320x256 像素超材料红外图像传感器
- 批准号:
23H01883 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)