Stability of waves in discrete and continuous dynamical systems
离散和连续动力系统中波的稳定性
基本信息
- 批准号:1313107
- 负责人:
- 金额:$ 18.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-15 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main theme of the proposed research will be the linear and asymptotic stability of special solutions (waves) of a wide class of partial differential equations. In a series of recent works, the PI and collaborators have characterized the linear stability of travelling and standing waves for second order in time equations and systems. Such results provide necessary information for the asymptotic stability of the same waves. The PI and collaborators will build on their previous work to show asymptotic stability of standing waves for the following models: the Klein-Gordon equation, the sine Gordon equation and the Dirac equation. A second goal of the proposal is to study the existence and stability of coherent structures, arising in spatially discrete models. More concretely, the project will deal, among other things, with Hertzian granular chains/crystals and the discrete nonlinear Schr\"odinger equation.The project deals with nonlinear dispersive equations, which model wavelike behavior of important physical processes. Important class of problems under consideration include the propagation of light in optical waveguides, motion of quantum particles, the mechanics of fluids to mention a few. The overarching theme of the investigation will be the stability of coherent configuration - that is, if one is initially close to such coherent structure, does it stay close to it forever? The mathematical formulation of such problems, as well as their analysis and predictions about their long time behavior will greatly enhance our understanding of these and related processes.
所提出的研究的主要主题将是一大类偏微分方程解(波)的线性和渐近稳定性。在最近的一系列工作中,PI及其合作者刻画了时间方程和系统中二阶行波和驻波的线性稳定性。这些结果为相同波的渐近稳定性提供了必要的信息。PI和合作者将在他们之前的工作的基础上,证明下列模型的驻波的渐近稳定性:Klein-Gordon方程,Sine Gordon方程和Dirac方程。该提议的第二个目标是研究空间离散模型中产生的相干结构的存在和稳定性。更具体地说,该项目将处理赫兹颗粒链/晶体和离散的非线性薛定谔方程。该项目处理非线性色散方程,它模拟重要物理过程的波动行为。正在考虑的重要问题包括光在光波导中的传播,量子粒子的运动,流体的力学等等。调查的首要主题将是连贯结构的稳定性--也就是说,如果一开始接近这种连贯结构,它会永远保持接近吗?对这类问题的数学表述,以及它们对其长期行为的分析和预测,将极大地增强我们对这些过程和相关过程的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Atanas Stefanov其他文献
On Global Finite Energy Solutions of the Camassa-Holm Equation
- DOI:
10.1007/s00041-005-4047-4 - 发表时间:
2005-08-08 - 期刊:
- 影响因子:1.200
- 作者:
Milena Stanislavova;Atanas Stefanov - 通讯作者:
Atanas Stefanov
Pseudodifferential Operators with Rough Symbols
- DOI:
10.1007/s00041-009-9079-8 - 发表时间:
2009-05-23 - 期刊:
- 影响因子:1.200
- 作者:
Atanas Stefanov - 通讯作者:
Atanas Stefanov
Global regularity results of the 2D fractional Boussinesq equations
- DOI:
10.1007/s00208-024-03073-7 - 发表时间:
2024-12-26 - 期刊:
- 影响因子:1.400
- 作者:
Atanas Stefanov;Jiahong Wu;Xiaojing Xu;Zhuan Ye - 通讯作者:
Zhuan Ye
On the Spectral Problem $${\mathcal{L} u=\lambda u'}$$ and Applications
- DOI:
10.1007/s00220-015-2542-2 - 发表时间:
2015-12-24 - 期刊:
- 影响因子:2.600
- 作者:
Milena Stanislavova;Atanas Stefanov - 通讯作者:
Atanas Stefanov
Atanas Stefanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Atanas Stefanov', 18)}}的其他基金
Dynamics and Stability of Nonlinear Waves
非线性波的动力学和稳定性
- 批准号:
2204788 - 财政年份:2021
- 资助金额:
$ 18.47万 - 项目类别:
Continuing Grant
Dynamics and Stability of Nonlinear Waves
非线性波的动力学和稳定性
- 批准号:
1908626 - 财政年份:2019
- 资助金额:
$ 18.47万 - 项目类别:
Continuing Grant
Stability of Solitary Waves in Dynamical Systems
动力系统中孤立波的稳定性
- 批准号:
1614734 - 财政年份:2016
- 资助金额:
$ 18.47万 - 项目类别:
Standard Grant
Workshop: Stability of solitary waves, May 25-30, 2014
研讨会:孤立波的稳定性,2014 年 5 月 25-30 日
- 批准号:
1419217 - 财政年份:2014
- 资助金额:
$ 18.47万 - 项目类别:
Standard Grant
Stability in Discrete and Continuous Dynamical Systems
离散和连续动力系统的稳定性
- 批准号:
0908802 - 财政年份:2009
- 资助金额:
$ 18.47万 - 项目类别:
Continuing Grant
Harmonic Analysis and Nonlinear Dispersive Equations
谐波分析和非线性色散方程
- 批准号:
0701802 - 财政年份:2007
- 资助金额:
$ 18.47万 - 项目类别:
Standard Grant
Harmonic analysis and applications to geometric PDE's
调和分析及其在几何偏微分方程中的应用
- 批准号:
0300511 - 财政年份:2003
- 资助金额:
$ 18.47万 - 项目类别:
Standard Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
NEWWAVE: New methods for analysing travelling waves in discrete systems with applications to neuroscience
NEWWAVE:分析离散系统中行波的新方法及其在神经科学中的应用
- 批准号:
EP/Y027531/1 - 财政年份:2024
- 资助金额:
$ 18.47万 - 项目类别:
Fellowship
Quest for Mechanical Rogue Waves in One-dimensional Discrete Lattices
寻找一维离散晶格中的机械流氓波
- 批准号:
1933729 - 财政年份:2019
- 资助金额:
$ 18.47万 - 项目类别:
Standard Grant
Ergodic theory of nonlinear waves in discrete and continuous excitable media
离散和连续可激发介质中非线性波的遍历理论
- 批准号:
384027439 - 财政年份:2017
- 资助金额:
$ 18.47万 - 项目类别:
Research Grants
Traveling localized waves in discrete lattices
在离散晶格中传播局域波
- 批准号:
238931-2006 - 财政年份:2010
- 资助金额:
$ 18.47万 - 项目类别:
Discovery Grants Program - Individual
Traveling localized waves in discrete lattices
在离散晶格中传播局域波
- 批准号:
238931-2006 - 财政年份:2009
- 资助金额:
$ 18.47万 - 项目类别:
Discovery Grants Program - Individual
Traveling localized waves in discrete lattices
在离散晶格中传播局域波
- 批准号:
238931-2006 - 财政年份:2008
- 资助金额:
$ 18.47万 - 项目类别:
Discovery Grants Program - Individual
Traveling localized waves in discrete lattices
在离散晶格中传播局域波
- 批准号:
238931-2006 - 财政年份:2007
- 资助金额:
$ 18.47万 - 项目类别:
Discovery Grants Program - Individual
Traveling localized waves in discrete lattices
在离散晶格中传播局域波
- 批准号:
238931-2006 - 财政年份:2006
- 资助金额:
$ 18.47万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Modeling of Intracellular Calcium Dynamics: Nucleation Probabilities of Waves in discrete excitable Media (B 09)
细胞内钙动力学的随机建模:离散可兴奋介质中波的成核概率 (B 09)
- 批准号:
5434056 - 财政年份:2004
- 资助金额:
$ 18.47万 - 项目类别:
Collaborative Research Centres
An experimental trial to detect nucleation processes of faults with a gouge layer by transmission waves
透射波探测凿岩层断层成核过程的实验研究
- 批准号:
14340134 - 财政年份:2002
- 资助金额:
$ 18.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)