Dynamics and Stability of Nonlinear Waves
非线性波的动力学和稳定性
基本信息
- 批准号:2204788
- 负责人:
- 金额:$ 23.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many physical processes are best described mathematically in terms of mathematical models that involve (partial differential) equations governing the interactions and dynamics of characteristic physical quantities, such as amplitude, voltage, or concentration to name a few. Very often, one observes a group-like behavior, which is attributed to the existence and persistence of the so-called wave solutions of these mathematical models. The identification of such solutions and their stability (or instability) properties is of enormous importance in contemporary technological applications. On the other hand, precise information about instability and abnormal behavior (such as blow ups) provides valuable information about validity and applicability of mathematical models themselves. This research is aimed at providing new mathematical tools to study non-linear dispersive equations, which are mathematical models for water wave dynamics, magnetization of materials, propagation of light in optical devices and related phenomena of quantum mechanics, to name a few. In particular, the principal investigator (PI) aims obtaining precise, quantitative information about the long-time behavior of such systems. In addition, the PI will be actively engaged in the training of the new generation of scientists, who will need to have the technical expertise in several areas to meet the challenges in the analysis and computation of cutting-edge physical systems and their modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多物理过程以数学模型的形式得到最好的描述,这些数学模型涉及控制特征物理量的相互作用和动力学的(偏微分方程式),例如幅度、电压或浓度。人们经常观察到一种类似群体的行为,这归因于这些数学模型的所谓波解的存在和持久性。这种解决方案及其稳定性(或不稳定性)性质的确定在当代技术应用中具有极其重要的意义。另一方面,有关不稳定和异常行为(如爆炸)的准确信息提供了有关数学模型本身的有效性和适用性的有价值的信息。这项研究旨在为研究非线性色散方程提供新的数学工具,这些方程包括水波动力学、材料磁化、光在光学器件中的传播以及与量子力学相关的现象的数学模型等。特别是,首席调查员(PI)的目标是获得关于此类系统长期行为的准确、定量的信息。此外,PI将积极参与新一代科学家的培训,他们需要在几个领域拥有技术专业知识,以应对尖端物理系统及其建模的分析和计算方面的挑战。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mixed dispersion nonlinear Schrödinger equation in higher dimensions: theoretical analysis and numerical computations
高维混合色散非线性薛定谔方程:理论分析和数值计算
- DOI:10.1088/1751-8121/ac7019
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Stefanov, Atanas;Tsolias, Georgios A;Cuevas-Maraver, Jesús;Kevrekidis, Panayotis G
- 通讯作者:Kevrekidis, Panayotis G
On the Stability of the Periodic Waves for the Benney System
Benney系统周期波的稳定性
- DOI:10.1137/21m1461630
- 发表时间:2022
- 期刊:
- 影响因子:2.1
- 作者:Hakkaev, Sevdzhan;Stanislavova, Milena;Stefanov, Atanas
- 通讯作者:Stefanov, Atanas
On the Normalized Ground States of Second Order PDE’s with Mixed Power Non-linearities
- DOI:10.1007/s00220-019-03484-7
- 发表时间:2019-06
- 期刊:
- 影响因子:2.4
- 作者:A. Stefanov
- 通讯作者:A. Stefanov
On the stability of periodic waves for the Zakharov system
扎哈罗夫系统周期波的稳定性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:1.3
- 作者:S. Hakkaev, M. Stanislavova
- 通讯作者:S. Hakkaev, M. Stanislavova
On the instability of the Ruf–Sani solitons for the NLS with exponential nonlinearity
具有指数非线性的 NLS 的 RufâSani 孤子的不稳定性
- DOI:10.1016/j.aml.2022.107988
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Hajaiej, Hichem;Stefanov, Atanas G.
- 通讯作者:Stefanov, Atanas G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Atanas Stefanov其他文献
On Global Finite Energy Solutions of the Camassa-Holm Equation
- DOI:
10.1007/s00041-005-4047-4 - 发表时间:
2005-08-08 - 期刊:
- 影响因子:1.200
- 作者:
Milena Stanislavova;Atanas Stefanov - 通讯作者:
Atanas Stefanov
Pseudodifferential Operators with Rough Symbols
- DOI:
10.1007/s00041-009-9079-8 - 发表时间:
2009-05-23 - 期刊:
- 影响因子:1.200
- 作者:
Atanas Stefanov - 通讯作者:
Atanas Stefanov
Global regularity results of the 2D fractional Boussinesq equations
- DOI:
10.1007/s00208-024-03073-7 - 发表时间:
2024-12-26 - 期刊:
- 影响因子:1.400
- 作者:
Atanas Stefanov;Jiahong Wu;Xiaojing Xu;Zhuan Ye - 通讯作者:
Zhuan Ye
On the Spectral Problem $${\mathcal{L} u=\lambda u'}$$ and Applications
- DOI:
10.1007/s00220-015-2542-2 - 发表时间:
2015-12-24 - 期刊:
- 影响因子:2.600
- 作者:
Milena Stanislavova;Atanas Stefanov - 通讯作者:
Atanas Stefanov
Atanas Stefanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Atanas Stefanov', 18)}}的其他基金
Dynamics and Stability of Nonlinear Waves
非线性波的动力学和稳定性
- 批准号:
1908626 - 财政年份:2019
- 资助金额:
$ 23.11万 - 项目类别:
Continuing Grant
Stability of Solitary Waves in Dynamical Systems
动力系统中孤立波的稳定性
- 批准号:
1614734 - 财政年份:2016
- 资助金额:
$ 23.11万 - 项目类别:
Standard Grant
Workshop: Stability of solitary waves, May 25-30, 2014
研讨会:孤立波的稳定性,2014 年 5 月 25-30 日
- 批准号:
1419217 - 财政年份:2014
- 资助金额:
$ 23.11万 - 项目类别:
Standard Grant
Stability of waves in discrete and continuous dynamical systems
离散和连续动力系统中波的稳定性
- 批准号:
1313107 - 财政年份:2013
- 资助金额:
$ 23.11万 - 项目类别:
Continuing Grant
Stability in Discrete and Continuous Dynamical Systems
离散和连续动力系统的稳定性
- 批准号:
0908802 - 财政年份:2009
- 资助金额:
$ 23.11万 - 项目类别:
Continuing Grant
Harmonic Analysis and Nonlinear Dispersive Equations
谐波分析和非线性色散方程
- 批准号:
0701802 - 财政年份:2007
- 资助金额:
$ 23.11万 - 项目类别:
Standard Grant
Harmonic analysis and applications to geometric PDE's
调和分析及其在几何偏微分方程中的应用
- 批准号:
0300511 - 财政年份:2003
- 资助金额:
$ 23.11万 - 项目类别:
Standard Grant
相似国自然基金
随机激励下多稳态系统的临界过渡识别及Basin Stability分析
- 批准号:11872305
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Dynamics and Stability of Nonlinear Waves
非线性波的动力学和稳定性
- 批准号:
1908626 - 财政年份:2019
- 资助金额:
$ 23.11万 - 项目类别:
Continuing Grant
Algorithms for Large-Scale Nonlinear Eigenvalue Problems: Interpolation, Stability, Transient Dynamics
大规模非线性特征值问题的算法:插值、稳定性、瞬态动力学
- 批准号:
1720257 - 财政年份:2017
- 资助金额:
$ 23.11万 - 项目类别:
Standard Grant
Existence, Stability, and Dynamics of Nonlinear Waves
非线性波的存在性、稳定性和动力学
- 批准号:
1614785 - 财政年份:2016
- 资助金额:
$ 23.11万 - 项目类别:
Standard Grant
ON THE DYNAMICS, STRUCTURE AND STABILITY OF CERTAIN NONLINEAR SYSTEMS IN APPLIED SCIENCES
应用科学中某些非线性系统的动力学、结构和稳定性
- 批准号:
1211519 - 财政年份:2012
- 资助金额:
$ 23.11万 - 项目类别:
Continuing Grant
Nonlinear Stability of Multidimensional Structures in Fluid Dynamics
流体动力学中多维结构的非线性稳定性
- 批准号:
1001616 - 财政年份:2010
- 资助金额:
$ 23.11万 - 项目类别:
Continuing Grant
Stability and nonlinear structure for the nonlinear partial differential equations of gas dynamics.
气体动力学非线性偏微分方程的稳定性和非线性结构。
- 批准号:
21740111 - 财政年份:2009
- 资助金额:
$ 23.11万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
On the Dynamics, Structure and Stability of Certain Nonlinear Systems in Applied Sciences
应用科学中某些非线性系统的动力学、结构和稳定性
- 批准号:
0807815 - 财政年份:2008
- 资助金额:
$ 23.11万 - 项目类别:
Continuing Grant
Nonlinear dynamics and stability of cylindrical structures to flowing fluid and force excitation
圆柱形结构对流动流体和力激励的非线性动力学和稳定性
- 批准号:
343797-2007 - 财政年份:2008
- 资助金额:
$ 23.11万 - 项目类别:
Postdoctoral Fellowships
Dynamics and Stability of Stochastic Nonlinear Auto-parametric Systems
随机非线性自参数系统的动力学和稳定性
- 批准号:
0758569 - 财政年份:2008
- 资助金额:
$ 23.11万 - 项目类别:
Standard Grant
Nonlinear dynamics and stability of cylindrical structures to flowing fluid and force excitation
圆柱形结构对流动流体和力激励的非线性动力学和稳定性
- 批准号:
343797-2007 - 财政年份:2007
- 资助金额:
$ 23.11万 - 项目类别:
Postdoctoral Fellowships