Stability of Solitary Waves in Dynamical Systems
动力系统中孤立波的稳定性
基本信息
- 批准号:1614734
- 负责人:
- 金额:$ 19.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nonlinear wave equations give a mathematical description for many phenomena in optics, fluid dynamics, and a variety of other physical systems. This research is aimed at the mathematical study of special and very important "solitary-wave" solutions that represent a single wave or a train of single waves traveling through the medium. Solutions of this mathematical nature are instrumental for predicting behavior and designing engineering devices for the wide range of physically unrelated phenomena, such as water wave dynamics, in particular, gigantic ocean waves ("rogue" waves), magnetization of materials, propagation of light in optical fibers and other optical media, or some quantum mechanical dynamics. Even when it is not possible to completely determine the solutions to such equations, the evolution of the corresponding physical system can often be understood satisfactorily by considering a computational or approximate solution. This is feasible, provided the behavior of solutions does not change qualitatively when unavoidable computational errors or uncertainty in the parameters are introduced. In mathematics this insensitivity to small perturbations is termed "stability." The principal goal of this research project is developing new mathematical tools for study nonlinear dispersive waves and stability of their solitary-wave solutions. In particular, the Principal Investigator (PI) aims at obtaining precise, quantitative information about the long time (asymptotic) behavior. Graduate students will be trained and mentored through their participation in this project.The PI will consider the questions of stability of solitons, such as traveling waves, standing waves, traveling kinks, for various models arising in physical applications. Of particular concern will be the close-to-soliton behavior of the Dirac equations, the Ostrovsky and the short pulse equations, as well as various water wave equations. In addition, the PI will address several outstanding problems in the theory of spatially discrete dispersive systems, of the type of the discrete nonlinear Schroedinger equation and the granular chain model with Hertzian interactions. These are the models, where new paradigms are expected to emerge. More precisely, the models present obstacles to their investigation that are either not present in the corresponding "standard" continuous limits or else, the solutions behave in a substantially different ways than the respective continuous analogues. Thus, new mathematical methods need to be developed to address the challenges associated with the study of evolution of these discrete models.
非线性波动方程为光学、流体动力学和各种其他物理系统中的许多现象提供了数学描述。这项研究的目的是对特殊和非常重要的孤立波解的数学研究,这些孤立波解代表通过介质的单个波或单个波列。这种数学性质的解对于预测行为和为广泛的物理无关现象设计工程设备是很有用的,例如水波动力学,特别是巨大的海浪(“无赖”波)、材料的磁化、光在光纤和其他光学介质中的传播,或者一些量子力学动力学。即使不可能完全确定这些方程的解,通过考虑计算或近似解,通常也能令人满意地理解相应物理系统的演化。这是可行的,只要当不可避免的计算误差或参数中的不确定性引入时,解的行为不会发生质的变化。在数学上,这种对微小扰动的不敏感被称为“稳定性”。这个研究项目的主要目的是开发新的数学工具来研究非线性色散波及其孤立波解的稳定性。特别是,首席调查员(PI)的目标是获得关于长时间(渐近)行为的准确、定量的信息。研究生将通过参与这个项目得到培训和指导。PI将考虑物理应用中出现的各种模型的孤子稳定性问题,如行波、驻波、行波扭结。特别值得关注的是狄拉克方程、奥斯特罗夫斯基方程、短脉冲方程以及各种水波方程的接近孤子行为。此外,PI还将解决空间离散色散系统理论中的几个突出问题,即离散的非线性薛定谔方程和具有赫兹相互作用的颗粒链模型。这些都是模式,预计会出现新的范式。更准确地说,这些模型给他们的研究带来了障碍,这些障碍要么没有出现在相应的“标准”连续限制中,要么解决方案的行为方式与相应的连续类似物有很大不同。因此,需要开发新的数学方法来解决与研究这些离散模型的演化相关的挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Atanas Stefanov其他文献
On Global Finite Energy Solutions of the Camassa-Holm Equation
- DOI:
10.1007/s00041-005-4047-4 - 发表时间:
2005-08-08 - 期刊:
- 影响因子:1.200
- 作者:
Milena Stanislavova;Atanas Stefanov - 通讯作者:
Atanas Stefanov
Pseudodifferential Operators with Rough Symbols
- DOI:
10.1007/s00041-009-9079-8 - 发表时间:
2009-05-23 - 期刊:
- 影响因子:1.200
- 作者:
Atanas Stefanov - 通讯作者:
Atanas Stefanov
Global regularity results of the 2D fractional Boussinesq equations
- DOI:
10.1007/s00208-024-03073-7 - 发表时间:
2024-12-26 - 期刊:
- 影响因子:1.400
- 作者:
Atanas Stefanov;Jiahong Wu;Xiaojing Xu;Zhuan Ye - 通讯作者:
Zhuan Ye
On the Spectral Problem $${\mathcal{L} u=\lambda u'}$$ and Applications
- DOI:
10.1007/s00220-015-2542-2 - 发表时间:
2015-12-24 - 期刊:
- 影响因子:2.600
- 作者:
Milena Stanislavova;Atanas Stefanov - 通讯作者:
Atanas Stefanov
Atanas Stefanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Atanas Stefanov', 18)}}的其他基金
Dynamics and Stability of Nonlinear Waves
非线性波的动力学和稳定性
- 批准号:
2204788 - 财政年份:2021
- 资助金额:
$ 19.3万 - 项目类别:
Continuing Grant
Dynamics and Stability of Nonlinear Waves
非线性波的动力学和稳定性
- 批准号:
1908626 - 财政年份:2019
- 资助金额:
$ 19.3万 - 项目类别:
Continuing Grant
Workshop: Stability of solitary waves, May 25-30, 2014
研讨会:孤立波的稳定性,2014 年 5 月 25-30 日
- 批准号:
1419217 - 财政年份:2014
- 资助金额:
$ 19.3万 - 项目类别:
Standard Grant
Stability of waves in discrete and continuous dynamical systems
离散和连续动力系统中波的稳定性
- 批准号:
1313107 - 财政年份:2013
- 资助金额:
$ 19.3万 - 项目类别:
Continuing Grant
Stability in Discrete and Continuous Dynamical Systems
离散和连续动力系统的稳定性
- 批准号:
0908802 - 财政年份:2009
- 资助金额:
$ 19.3万 - 项目类别:
Continuing Grant
Harmonic Analysis and Nonlinear Dispersive Equations
谐波分析和非线性色散方程
- 批准号:
0701802 - 财政年份:2007
- 资助金额:
$ 19.3万 - 项目类别:
Standard Grant
Harmonic analysis and applications to geometric PDE's
调和分析及其在几何偏微分方程中的应用
- 批准号:
0300511 - 财政年份:2003
- 资助金额:
$ 19.3万 - 项目类别:
Standard Grant
相似海外基金
Wave Turbulence and Stability of Solitary Waves
波湍流和孤立波的稳定性
- 批准号:
2155050 - 财政年份:2022
- 资助金额:
$ 19.3万 - 项目类别:
Standard Grant
Studies on stability of solitary waves for nonlinear dispersive wave equations
非线性色散波动方程孤波稳定性研究
- 批准号:
21K03315 - 财政年份:2021
- 资助金额:
$ 19.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classification of stability and instability of solitary waves for nonlinear Schroedinger equations
非线性薛定谔方程的孤波稳定性和不稳定性分类
- 批准号:
20K14349 - 财政年份:2020
- 资助金额:
$ 19.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Stability of two parameter family of solitary waves for nonlinear dispersive equations
非线性色散方程孤立波二参数族的稳定性
- 批准号:
18J11090 - 财政年份:2018
- 资助金额:
$ 19.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Workshop: Stability of solitary waves, May 25-30, 2014
研讨会:孤立波的稳定性,2014 年 5 月 25-30 日
- 批准号:
1419217 - 财政年份:2014
- 资助金额:
$ 19.3万 - 项目类别:
Standard Grant
Stability and dynamics of solitary gravity-capillary waves
孤立重力毛细波的稳定性和动力学
- 批准号:
EP/H022740/1 - 财政年份:2010
- 资助金额:
$ 19.3万 - 项目类别:
Research Grant
Indefinite metric space methods in the spectral stability of solitary waves in Hamiltonian systems.
哈密顿系统中孤立波谱稳定性的不定度量空间方法。
- 批准号:
343279-2007 - 财政年份:2009
- 资助金额:
$ 19.3万 - 项目类别:
Postdoctoral Fellowships
Stability of solitary waves for nonlinear dispersive equations
非线性色散方程的孤波稳定性
- 批准号:
21740089 - 财政年份:2009
- 资助金额:
$ 19.3万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Indefinite metric space methods in the spectral stability of solitary waves in Hamiltonian systems.
哈密顿系统中孤立波谱稳定性的不定度量空间方法。
- 批准号:
343279-2007 - 财政年份:2008
- 资助金额:
$ 19.3万 - 项目类别:
Postdoctoral Fellowships
Stability of Solitary Waves on Water of Finite Depth
有限深度水面上孤立波的稳定性
- 批准号:
0807597 - 财政年份:2008
- 资助金额:
$ 19.3万 - 项目类别:
Standard Grant