SHF:Small:Graph Sparsification Approach to Scalable Parallel SPICE-Accurate Simulation of Post-layout Integrated Circuits

SHF:Small:可扩展并行 SPICE 的图稀疏方法 - 布局后集成电路的精确仿真

基本信息

  • 批准号:
    1318694
  • 负责人:
  • 金额:
    $ 25.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Unlike traditional fast SPICE simulation techniques that rely on a variety of approximation approaches to trade off simulation accuracy for greater speed, SPICE-accurate integrated circuit (IC) simulations can truthfully predict circuit electrical behaviors, and therefore become indispensable for design and verification of nanoscale ICs. However, for post-layout nanoscale circuits, using traditional SPICE-accurate simulation techniques to encapsulate multi-million or even multi-billion devices coupled through complex parasitics can be prohibitively expensive, and thus not applicable to large IC designs, since the runtime and memory cost for solving large sparse matrix problems using direct solution methods will increase quickly with the growing circuit sizes and parasitics densities. To achieve greater simulation efficiency and capacity during post-layout simulations, preconditioned iterative solution techniques have been recently proposed to substitute the direct solution methods. However, existing preconditioned methods for post-layout circuit simulations are typically designed with various assumptions and constraints on the circuit and systems to be analyzed, which therefore cannot be effectively and reliably applied to general-purpose SPICE-accurate circuit simulations. In this research project, the PI will study efficient yet robust circuit-oriented preconditioning approaches for scalable SPICE-accurate post-layout IC simulations by leveraging recent graph sparsification research. By systematically sparsifying linear/nonlinear dynamic networks originated from dense parasitics components and complex device elements of post-layout circuits, scalable, and more importantly, parallelizable preconditioned iterative algorithms will be investigated and developed by the PI to enable much greater speed and capacity for SPICE-accurate IC simulations in both time and frequency domains.The successful completion of this work will immediately benefit the semiconductor industries. The algorithms and methodologies to be developed through this project will be integrated into undergraduate/graduate level VLSI design/CAD courses, while the research results will be broadly disseminated to major semiconductor and EDA companies for potential industrial applications. The CAD tools developed under this research plan will also be exchanged with collaborating industrial partners. The acquired experience in the proposed research plan is also likely to contribute to computing advances in other science and engineering fields, impacting broader research areas that are related to large/complex system modeling and simulation.
与传统的快速SPICE仿真技术不同,SPICE精确集成电路(IC)仿真可以真实地预测电路的电气行为,因此成为纳米级IC设计和验证不可或缺的。然而,对于布局后的纳米级电路,使用传统的SPICE精确仿真技术来封装通过复杂寄生耦合的数百万甚至数十亿器件可能过于昂贵,因此不适用于大型IC设计,因为使用直接求解方法解决大型稀疏矩阵问题的运行时间和存储器成本将随着电路尺寸和寄生密度的增长而迅速增加。为了在布局后仿真中获得更高的仿真效率和容量,最近提出了预条件迭代求解技术来代替直接求解方法。然而,现有的用于布局后电路仿真的预处理方法通常被设计成具有对要分析的电路和系统的各种假设和约束,因此其不能有效且可靠地应用于通用SPICE精确电路仿真。在这个研究项目中,PI将研究有效而强大的面向电路的预处理方法,通过利用最近的图形稀疏化研究,进行可扩展的SPICE精确布局后IC模拟。通过系统地稀疏化源自密集寄生元件和布局后电路的复杂器件元件的线性/非线性动态网络,可扩展,更重要的是,PI将研究和开发可并行化的预处理迭代算法,以提高SPICE的速度和容量。在时域和频域中进行精确的IC仿真。这项工作的成功完成将立即使半导体行业受益。通过该项目开发的算法和方法将被集成到本科/研究生水平的VLSI设计/CAD课程中,而研究成果将广泛传播给主要的半导体和EDA公司,以供潜在的工业应用。根据这项研究计划开发的CAD工具也将与合作的工业伙伴进行交流。在拟议的研究计划中获得的经验也可能有助于其他科学和工程领域的计算进步,影响与大型/复杂系统建模和仿真相关的更广泛的研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhuo Feng其他文献

A Behavioral Study of Chinese Online Human Flesh Communities: Modeling and Analysis with Social Networks
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhuo Feng
  • 通讯作者:
    Zhuo Feng
Measuring residents' anxiety under urban redevelopment in China: An investigation of demographic variables
测量中国城市重建中居民的焦虑:人口变量调查
  • DOI:
    10.1007/s42524-020-0131-3
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Jinbo Song;Chen Qian;Zhuo Feng;Liang Ma
  • 通讯作者:
    Liang Ma
Scalable Multilevel Vectorless Power Grid Voltage Integrity Verification
可扩展的多级无矢量电网电压完整性验证
Substantial gas enrichment in shales influenced by volcanism during the Ordovician–Silurian transition
  • DOI:
    10.1016/j.coal.2024.104638
  • 发表时间:
    2024-12-04
  • 期刊:
  • 影响因子:
  • 作者:
    Yujie Yuan;Songtao Wu;Emad A. Al-Khdheeawi;Jingqiang Tan;Zhuo Feng;Zhenjiang You;Reza Rezaee;Han Jiang;Jun Wang;Stefan Iglauer
  • 通讯作者:
    Stefan Iglauer
Strategic highway development in port competition: A game-theoretical approach
港口竞争中的战略公路发展:一种博弈论方法

Zhuo Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhuo Feng', 18)}}的其他基金

Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
  • 批准号:
    2212370
  • 财政年份:
    2022
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Continuing Grant
SHF: Small: Learning Circuit Networks from Measurements
SHF:小型:从测量中学习电路网络
  • 批准号:
    2205572
  • 财政年份:
    2022
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Heterogeneous Manycore Systems for Scalable Modeling, Simulation and Verification of Nanoscale Integrated Circuits
职业:利用异构众核系统进行纳米级集成电路的可扩展建模、仿真和验证
  • 批准号:
    2041519
  • 财政年份:
    2020
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Continuing Grant
SHF: Small: Spectral Reduction of Large Graphs and Circuit Networks
SHF:小:大型图和电路网络的频谱缩减
  • 批准号:
    2021309
  • 财政年份:
    2019
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Standard Grant
SHF: Small: Scalable Spectral Sparsification of Graph Laplacians and Integrated Circuits
SHF:小:图拉普拉斯和集成电路的可扩展谱稀疏化
  • 批准号:
    2011412
  • 财政年份:
    2019
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Standard Grant
SHF: Small: Spectral Reduction of Large Graphs and Circuit Networks
SHF:小:大型图和电路网络的频谱缩减
  • 批准号:
    1909105
  • 财政年份:
    2019
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Standard Grant
SHF: Small: Scalable Spectral Sparsification of Graph Laplacians and Integrated Circuits
SHF:小:图拉普拉斯和集成电路的可扩展谱稀疏化
  • 批准号:
    1618364
  • 财政年份:
    2016
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Heterogeneous Manycore Systems for Scalable Modeling, Simulation and Verification of Nanoscale Integrated Circuits
职业:利用异构众核系统进行纳米级集成电路的可扩展建模、仿真和验证
  • 批准号:
    1350206
  • 财政年份:
    2014
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Continuing Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

SHF: Small: Boosting Reasoning in Boolean Networks with Attributed Graph Learning
SHF:小:通过属性图学习增强布尔网络的推理
  • 批准号:
    2350186
  • 财政年份:
    2023
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Standard Grant
SHF: Small: A General-purpose Parallel and Heterogeneous Task Graph Computing System for VLSI CAD
SHF:小型:用于 VLSI CAD 的通用并行异构任务图计算系统
  • 批准号:
    2349141
  • 财政年份:
    2023
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Standard Grant
SHF: Small: High Performance Graph Pattern Mining System and Architecture
SHF:小型:高性能图模式挖掘系统和架构
  • 批准号:
    2333645
  • 财政年份:
    2022
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Standard Grant
SHF: Small: Holistic Design of High-performance and Energy-efficient Accelerators for Graph Neural Networks
SHF:小型:图神经网络高性能、高能效加速器的整体设计
  • 批准号:
    2131946
  • 财政年份:
    2021
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Standard Grant
SHF: Small: A General-purpose Parallel and Heterogeneous Task Graph Computing System for VLSI CAD
SHF:小型:用于 VLSI CAD 的通用并行异构任务图计算系统
  • 批准号:
    2126672
  • 财政年份:
    2021
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Standard Grant
SHF: Small: High Performance Graph Pattern Mining System and Architecture
SHF:小型:高性能图模式挖掘系统和架构
  • 批准号:
    2127543
  • 财政年份:
    2021
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Standard Grant
SHF: Small: Boosting Reasoning in Boolean Networks with Attributed Graph Learning
SHF:小:通过属性图学习增强布尔网络的推理
  • 批准号:
    2008144
  • 财政年份:
    2020
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Standard Grant
SHF: Small: MIGS -- Efficiently Evaluating Multiple Iterative Graph Queries
SHF:小型:MIGS——高效评估多个迭代图查询
  • 批准号:
    2002554
  • 财政年份:
    2020
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: A Parallel Graph-Based Paradigm for HPC Parallel File System Checkers
SHF:小型:协作研究:基于并行图的 HPC 并行文件系统检查器范例
  • 批准号:
    1910747
  • 财政年份:
    2019
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Standard Grant
SHF: Small: Graph-X: Exploiting Hidden Parallelism of Irregular and Non-Stencil Computation in High-Level Synthesis
SHF:小:Graph-X:在高级综合中利用不规则和非模板计算的隐藏并行性
  • 批准号:
    1908177
  • 财政年份:
    2019
  • 资助金额:
    $ 25.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了