SHF: Small: Learning Circuit Networks from Measurements
SHF:小型:从测量中学习电路网络
基本信息
- 批准号:2205572
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Recent graph-learning techniques exploit both graph topological properties and node-feature (attribute) information to achieve promising results for various important applications such as vertex (data) classification, link prediction (recommendation systems), community detection, drug discovery, partial differential equation (PDE) solvers, and electronic design automation (EDA). On the other hand, graph learning can still be extremely challenging when there exists only partial or no knowledge about the underlying graph topologies. Fortunately, recent research shows that it is possible to learn graph topologies from node-feature (attribute) data so that existing graph-learning algorithms can be applied subsequently. However, even the state-of-the-art graph-topology-learning algorithms do not scale to large data sets due to their high computational complexity, which may prohibit their applications in real-world large-scale graph-learning tasks, such as those adopted for integrated-circuit networks involving billions of components. This project is also likely to spark new research in many other related fields, such as complex system/network modeling, model order reduction, computational biology, precision medicine, and transportation networks. The source code of the developed algorithms will be released on a public website managed by the PI to facilitate technology transfers to the industry, especially to the leading EDA companies. This research project will investigate highly scalable yet sample-efficient spectral methods for learning graph topologies from potentially high-dimensional data samples, such as voltage and current measurements in circuit networks. The proposed approach is based on a novel spectral-graph densification framework to allow for more efficient estimations of attractive Gaussian Markov Random Fields (GMRFs). A unique property of the learned graphs is that the effective-resistance distances on the learned graph will encode the similarities between the original data samples. The success of this research plan will immediately lead to the development of more scalable data-driven, physics-informed EDA algorithms for modeling, simulation, optimization, and verification of integrated circuits (ICs). The accomplished theoretical results will likely advance state of the art in spectral graph theory, dimensionality reduction, scientific computation, data visualization, and machine learning (ML).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的图学习技术利用图的拓扑属性和节点特征(属性)信息来获得各种重要的应用,如顶点(数据)分类、链接预测(推荐系统)、社区检测、药物发现、偏微分方程(PDE)解算器和电子设计自动化(EDA)。另一方面,当只有部分或根本没有关于底层图拓扑的知识时,图学习仍然是极具挑战性的。幸运的是,最近的研究表明,从节点特征(属性)数据中学习图拓扑是可能的,以便随后可以应用现有的图学习算法。然而,即使是最先进的图拓扑学习算法,由于其高度的计算复杂性,也不能扩展到大数据集,这可能会阻碍它们在现实世界的大规模图学习任务中的应用,例如涉及数十亿个元件的集成电路网络所采用的任务。该项目还可能在许多其他相关领域引发新的研究,如复杂系统/网络建模、模型降阶、计算生物学、精确医学和交通网络。开发的算法的源代码将在PI管理的公共网站上发布,以促进向行业,特别是领先的EDA公司转让技术。这项研究项目将研究从潜在的高维数据样本中学习图拓扑的高可伸缩性和样本效率的谱方法,例如电路网络中的电压和电流测量。该方法基于一种新的谱图增密框架,以允许更有效地估计有吸引力的高斯马尔可夫随机场(GMRF)。学习图的一个独特性质是,学习图上的有效电阻距离将编码原始数据样本之间的相似性。这一研究计划的成功将立即导致更具可扩展性的数据驱动、物理信息的EDA算法的开发,用于集成电路(IC)的建模、仿真、优化和验证。已完成的理论成果可能会促进谱图理论、降维、科学计算、数据可视化和机器学习(ML)的最新水平。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SF-SGL: Solver-Free Spectral Graph Learning From Linear Measurements
- DOI:10.1109/tcad.2022.3198513
- 发表时间:2023-02
- 期刊:
- 影响因子:2.9
- 作者:Ying Zhang;Zhiqiang Zhao;Zhuo Feng
- 通讯作者:Ying Zhang;Zhiqiang Zhao;Zhuo Feng
SF-GRASS: Solver-Free Graph Spectral Sparsification
- DOI:10.1145/3400302.3415629
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Ying Zhang;Zhiqiang Zhao;Zhuo Feng
- 通讯作者:Ying Zhang;Zhiqiang Zhao;Zhuo Feng
GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Chenhui Deng;Xiuyu Li;Zhuobo Feng;Zhiru Zhang
- 通讯作者:Chenhui Deng;Xiuyu Li;Zhuobo Feng;Zhiru Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhuo Feng其他文献
A Behavioral Study of Chinese Online Human Flesh Communities: Modeling and Analysis with Social Networks
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Zhuo Feng - 通讯作者:
Zhuo Feng
Measuring residents' anxiety under urban redevelopment in China: An investigation of demographic variables
测量中国城市重建中居民的焦虑:人口变量调查
- DOI:
10.1007/s42524-020-0131-3 - 发表时间:
2021 - 期刊:
- 影响因子:7.4
- 作者:
Jinbo Song;Chen Qian;Zhuo Feng;Liang Ma - 通讯作者:
Liang Ma
Scalable Multilevel Vectorless Power Grid Voltage Integrity Verification
可扩展的多级无矢量电网电压完整性验证
- DOI:
10.1109/tvlsi.2012.2212033 - 发表时间:
2013 - 期刊:
- 影响因子:2.8
- 作者:
Zhuo Feng - 通讯作者:
Zhuo Feng
Substantial gas enrichment in shales influenced by volcanism during the Ordovician–Silurian transition
- DOI:
10.1016/j.coal.2024.104638 - 发表时间:
2024-12-04 - 期刊:
- 影响因子:
- 作者:
Yujie Yuan;Songtao Wu;Emad A. Al-Khdheeawi;Jingqiang Tan;Zhuo Feng;Zhenjiang You;Reza Rezaee;Han Jiang;Jun Wang;Stefan Iglauer - 通讯作者:
Stefan Iglauer
Strategic highway development in port competition: A game-theoretical approach
港口竞争中的战略公路发展:一种博弈论方法
- DOI:
10.1016/j.tra.2025.104548 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:6.800
- 作者:
Ying Gao;Zhuainv Guo;Zhuo Feng;Shuibo Zhang - 通讯作者:
Shuibo Zhang
Zhuo Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhuo Feng', 18)}}的其他基金
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
- 批准号:
2212370 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Leveraging Heterogeneous Manycore Systems for Scalable Modeling, Simulation and Verification of Nanoscale Integrated Circuits
职业:利用异构众核系统进行纳米级集成电路的可扩展建模、仿真和验证
- 批准号:
2041519 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
SHF: Small: Spectral Reduction of Large Graphs and Circuit Networks
SHF:小:大型图和电路网络的频谱缩减
- 批准号:
2021309 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
SHF: Small: Scalable Spectral Sparsification of Graph Laplacians and Integrated Circuits
SHF:小:图拉普拉斯和集成电路的可扩展谱稀疏化
- 批准号:
2011412 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
SHF: Small: Spectral Reduction of Large Graphs and Circuit Networks
SHF:小:大型图和电路网络的频谱缩减
- 批准号:
1909105 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
SHF: Small: Scalable Spectral Sparsification of Graph Laplacians and Integrated Circuits
SHF:小:图拉普拉斯和集成电路的可扩展谱稀疏化
- 批准号:
1618364 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CAREER: Leveraging Heterogeneous Manycore Systems for Scalable Modeling, Simulation and Verification of Nanoscale Integrated Circuits
职业:利用异构众核系统进行纳米级集成电路的可扩展建模、仿真和验证
- 批准号:
1350206 - 财政年份:2014
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
SHF:Small:Graph Sparsification Approach to Scalable Parallel SPICE-Accurate Simulation of Post-layout Integrated Circuits
SHF:Small:可扩展并行 SPICE 的图稀疏方法 - 布局后集成电路的精确仿真
- 批准号:
1318694 - 财政年份:2013
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
- 批准号:
2334628 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
- 批准号:
2334380 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
SHF: Small: Boosting Reasoning in Boolean Networks with Attributed Graph Learning
SHF:小:通过属性图学习增强布尔网络的推理
- 批准号:
2350186 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
- 批准号:
2341183 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
SHF: Small: Software and Hardware Support for Robust Deep Learning
SHF:小型:强大深度学习的软件和硬件支持
- 批准号:
2301334 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
FET/SHF: Small: Reinforcement learning and transformer inspired smart photonics inverse design
FET/SHF:小型:强化学习和变压器启发的智能光子逆设计
- 批准号:
2309403 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
- 批准号:
2234921 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant