Collaborative Research: Dynamics of Mauna Loa's and Kilauea's magmatic systems from physics-based modeling

合作研究:基于物理建模的莫纳罗亚火山和基拉韦厄火山岩浆系统的动力学

基本信息

  • 批准号:
    1331088
  • 负责人:
  • 金额:
    $ 8.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

Dynamic linkage between volcanoes has implications for long- and short-term eruption forecasting. Although such linkage has been suggested to exist for some volcanic systems it remains controversial, as does the underlying mechanism. Recently, the possibility of dynamical coupling of Kilauea and Mauna Loa has been proposed as a consequence of pressure diffusion within an asthenospheric melt zone that underlies both volcanoes, and from which each volcano is supplied with melt, albeit from different parts of it. To test this hypothesis, we propose to construct a numerical model of combined subsurface magma flow and accumulation, magma degassing and volcano deformation. The magma flow model will be based on two-phase flow theory, with magma degassing incorporated from existing solubility and diffusivity formulations for magmatic volatiles. Volcano deformation will be modeled by coupling the flow model with well-established kinematic deformation models through mass conservation. Similarly, changes in magma composition will be estimated from mass balance considerations. Observations of surface deformation, gas emissions and changes in magma composition will constrain the time-dependent magma supply to each volcano. Model results will be used to test for correlative activity and assess potential mechanisms for dynamical coupling. In addition to testing this coupling hypothesis, the model can be used to interrogate the interplay between magma supply, storage and eruptive activity at each volcano, in particular at Kilauea, where the spatial and temporal frequencies of observations are high. In order to demonstrate the capabilities of this proposed modeling approach we will perform an exploration of the unknown parameters the model will include and all the available constraints. We will establish databases of the available geodetic, seismic, geochemical and gas observations, evaluate their completeness and reliability, and ascertain the model uncertainties and trade-offs, assessing the uniqueness of solutions and the statistics of the inverse problem.2013 marked the centennial of the Hawaiian Volcano Observatory located on Kilauea, Earth's most active, and near Mauna Loa, Earth's largest volcano. Both volcanoes are also two of the best and longest monitored volcanoes and have been instrumental to our understanding of the structure and dynamics of the Earth's mantle, the evolution of volcanic island chains, as well as basaltic volcanism in general. They are thought to be the archetypical manifestations of hot-spot volcanism, caused by a buoyantly upwelling mantle plume that undergoes partial melting at a few hundred kilometers depth beneath Hawaii. Upward percolation and accumulation of this melt results in spatially focused flow through the Hawaiian lithosphere, into magma chambers that are located at a few kilometers depth beneath each volcano, and from which volcanic eruptions are fed. Both volcanoes exhibit complex patterns of activity, including movement along large fault planes that underlie portions of each edifice, with the potential for large earthquakes, tsunamis and triggering of new eruptions. It has been suggested that magma accumulation at depth may itself facilitate movement on these faults. Whether these processes and feedbacks are confined to a single volcano or whether they may also affect the neighboring volcano remains uncertain. Future eruptions, especially from Mauna Loa, have significant potential to directly impact the main populations centers on the island of Hawaii, and an improved understanding of the processes at work within the volcanoes, and any dynamic link between then will benefit public safety through increased understanding of volcanoes and volcanic hazards. This project, which represents a collaborative effort between the University of Hawaii, Rice University and the US Geological Survey, is aimed at integrating a range of different types of observation and will, therefore, impact a number of different fields, including geodesy, seismology and geochemistry. Moreover, to maximize the public and educational impact, we will partner with New Media Arts classes from Kapiolani Community College.
火山之间的动态联系对长期和短期喷发预测具有影响。尽管有人认为某些火山系统存在这种联系,但它仍然存在争议,其根本机制也是如此。最近,基拉韦厄和莫纳罗亚山的动力学耦合的可能性已被提出作为一个软流圈熔融区,下两个火山,并从每个火山提供熔融的压力扩散的结果,虽然从不同的部分it.To检验这一假设,我们建议建立一个数值模型相结合的地下岩浆流动和积累,岩浆脱气和火山变形。岩浆流动模型将以两相流理论为基础,并从现有的岩浆挥发物溶解度和扩散率公式中纳入岩浆脱气。通过质量守恒将流动模型与完善的运动学变形模型耦合,对火山变形进行建模。同样,岩浆成分的变化将从质量平衡的考虑来估计。对地表变形、气体排放和岩浆成分变化的观测将限制每座火山随时间变化的岩浆供应。模型结果将用于测试相关活动和评估动态耦合的潜在机制。除了测试这一耦合假设,该模型可用于询问岩浆供应,存储和喷发活动之间的相互作用,在每个火山,特别是在基拉韦厄,在空间和时间频率的观测是高的。为了证明所提出的建模方法的能力,我们将对模型将包括的未知参数和所有可用的约束进行探索。我们将建立现有的大地测量,地震,地球化学和气体观测数据库,评估其完整性和可靠性,并确定模型的不确定性和权衡,评估解决方案的唯一性和反问题的统计数据。2013年标志着夏威夷火山天文台位于基拉韦厄,地球上最活跃的,靠近莫纳罗亚,地球上最大的火山百年。这两座火山也是监测最好和最长的两座火山,有助于我们了解地球地幔的结构和动力学,火山岛链的演变以及一般的玄武岩火山作用。它们被认为是热点火山活动的典型表现,是由夏威夷地下几百公里深处的地幔柱部分熔融而引起的。向上的渗透和这种熔体的积累导致空间集中的流动通过夏威夷岩石圈,进入位于每个火山下方几公里深处的岩浆房,并从火山喷发进料。这两座火山都表现出复杂的活动模式,包括沿着位于每个建筑物部分下方的大型断层平面运动,有可能发生大地震、海啸和引发新的喷发。有人认为,深部的岩浆聚集本身可能促进了这些断层上的运动。这些过程和反馈是否局限于一个单一的火山,或者它们是否也可能影响邻近的火山仍然不确定。未来的火山爆发,特别是莫纳罗亚火山的爆发,有可能直接影响夏威夷岛上的主要人口中心,提高对火山内部工作过程的理解,以及它们之间的任何动态联系,将通过提高对火山和火山灾害的理解,有益于公共安全。该项目是夏威夷大学、莱斯大学和美国地质调查局之间的一项合作努力,旨在整合一系列不同类型的观测,因此将影响若干不同领域,包括大地测量学、地震学和地球化学。此外,为了最大限度地提高公众和教育的影响,我们将与卡皮奥拉尼社区学院的新媒体艺术课程合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Helge Gonnermann其他文献

Helge Gonnermann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Helge Gonnermann', 18)}}的其他基金

Collaborative Research: The interplay of surface evolution, shallow magmatism, a large hydrothermal system, and hazards at Puyehue-Cordon Caulle Volcanic Complex, Chile
合作研究:智利 Puyehue-Cordon Caulle 火山群地表演化、浅层岩浆作用、大型热液系统和灾害的相互作用
  • 批准号:
    2317733
  • 财政年份:
    2023
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Continuing Grant
Opening and reestablishment of Kilauea's lower east rift zone magma plumbing system during the 2018 eruption
2018 年喷发期间基拉韦厄东部裂谷带岩浆管道系统的开放和重建
  • 批准号:
    2114382
  • 财政年份:
    2022
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Chamber or Conduit - Constraining Explosive Through Effusive Eruption at Cordon Caulle, Chile 2011/12
合作研究:室或管道 - 通过在智利 Cordon Caulle 的喷发来限制爆炸物 2011/12
  • 批准号:
    1824252
  • 财政年份:
    2018
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Standard Grant
Collaborative Research: A Self-consistent Model for Bubble Nucleation During Plinian Volcanic Eruptions
合作研究:普林尼火山喷发期间气泡成核的自洽模型
  • 批准号:
    1348072
  • 财政年份:
    2014
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Heterogeneous Bubble Dynamics in Volcanic Conduits
合作研究:火山管道中的非均质气泡动力学
  • 批准号:
    1250451
  • 财政年份:
    2013
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Hawaiian and Subplinian Basaltic Volcanism: Constraints on Eruption Dynamics from Kilauea
合作研究:夏威夷和亚普林阶玄武岩火山活动:基拉韦厄火山喷发动力学的限制
  • 批准号:
    1145187
  • 财政年份:
    2012
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Standard Grant
IDR/Collaborative Research: Activities in Thermal Spray Processing and Volcanology
IDR/合作研究:热喷涂加工和火山学方面的活动
  • 批准号:
    1015069
  • 财政年份:
    2010
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Standard Grant
Reconstructing Explosive Magma Vesiculation
重建爆炸岩浆囊泡
  • 批准号:
    1019872
  • 财政年份:
    2010
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326020
  • 财政年份:
    2024
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326021
  • 财政年份:
    2024
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348956
  • 财政年份:
    2024
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Standard Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
  • 批准号:
    2349872
  • 财政年份:
    2024
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337427
  • 财政年份:
    2024
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
  • 批准号:
    2242365
  • 财政年份:
    2024
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Snapping of Tethers
合作研究:系绳折断动力学
  • 批准号:
    2310665
  • 财政年份:
    2024
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348955
  • 财政年份:
    2024
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了