Collaborative Research: A Self-consistent Model for Bubble Nucleation During Plinian Volcanic Eruptions

合作研究:普林尼火山喷发期间气泡成核的自洽模型

基本信息

  • 批准号:
    1348072
  • 负责人:
  • 金额:
    $ 24.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-03-01 至 2018-02-28
  • 项目状态:
    已结题

项目摘要

One of the large-impact natural hazards to affect humans on a decadal time scale are highly explosive Plinian volcanic eruptions, whose dynamics are thought to be intimately linked to the manner by which magmatic gases, such as water and carbon dioxide, escape from the erupting magma. Magma degassing begins with the nucleation of bubbles, which are preserved as vesicles in the erupted volcanic rock fragments. It is thought that the number and size of bubbles in a given volume of volcanic rock provide records of the forces that drive bubble nucleation and, by inference, the dynamics of the eruption. Specifically, the speed at which magma rises to the surface, thereby undergoing decompression, and the rate at which bubbles nucleate are thought to be correlated and affect the explosive intensity of an eruption. About one million bubbles may nucleate within a cubic millimeter of magma over fractions of a second to a few seconds. This transformation from dissolved gases to gaseous bubbles under high pressure is a key mechanism for explosive eruptions. Current models for the rate of bubble nucleation during explosive eruptions are based on Classical Nucleation Theory. A preliminary analysis of laboratory experiments of bubble nucleation in magmas, where conditions (pressure, rate of decompression, composition, content of dissolved gases, temperature) are well known and controlled, has shown that this classical theory fails to predict the rate at which bubbles nucleate across a wide range of conditions. A fundamental issue in this regard is the requirement for decompression rates that may be higher than physically attainable during an eruption, thus over-predicting rates of magma ascent.The objective of this project is to obtain a new formulation for the rate bubble nucleation, which will be applicable across a wide range of conditions of relevance to explosive volcanic eruptions. This will be accomplished through an integrated study that is comprised of laboratory experiments of bubble nucleation in silicate melts and detailed numerical modeling of these experiments. The result of this study, that is a new formulation for bubble nucleation in silicate melts, will be incorporated into numerical models of explosive volcanic eruptions, thereby enhancing their predictive capabilities. These models, in turn, will be used to resolve the question of what the precise relationship between magma decompression rate and the number of bubbles that nucleate within a given volume of magma is, thereby allowing a more robust integration of observationally based studies with quantitative predictions through numerical modeling and hazard assessment. Moreover, nucleation theory is of importance in a wide range of disciplines, such as for example chemical engineering and material science. Because this project will integrate recent advances in other fields where Classical Nucleation Theory has been found inadequate, it will advance the state-of-the-art and also have the potential to impact other disciplines.
在十年的时间尺度上影响人类的重大自然灾害之一是高度爆炸性的普林尼安火山喷发,其动力学被认为与水和二氧化碳等岩浆气体从喷发的岩浆中逃逸的方式密切相关。岩浆脱气始于气泡的成核,气泡在喷发的火山岩碎片中以小泡的形式保存下来。人们认为,给定体积的火山岩中气泡的数量和大小记录了驱动气泡成核的力量,并由此推断出喷发的动力学。具体地说,岩浆上升到地表从而经历减压的速度和气泡成核的速度被认为是相关的,并影响喷发的爆炸强度。大约一百万个气泡可能会在一立方毫米的岩浆中成核,持续几秒到几秒。高压下从溶解气体到气泡的这种转变是爆发的关键机制。目前关于喷发过程中气泡成核速率的模型是基于经典成核理论的。对岩浆中气泡成核的实验室实验的初步分析表明,这一经典理论无法在广泛的条件下预测气泡的成核速度。在这些实验中,条件(压力、减压速率、成分、溶解气体含量、温度)是众所周知的,并且是可控的。这方面的一个基本问题是对减压速率的要求可能高于喷发期间实际可达到的速率,从而高估了岩浆上升的速率。该项目的目标是获得一种新的速率气泡成核公式,该公式将适用于与火山爆发相关的广泛条件。这将通过一项综合研究来实现,该研究包括硅酸盐熔体中气泡成核的实验室实验和这些实验的详细数值模拟。这项研究的结果,即硅酸盐熔体中气泡成核的新公式,将被纳入火山爆发的数值模型,从而增强它们的预测能力。反过来,这些模型将被用来解决岩浆减压速率与在给定体积的岩浆中成核的气泡数量之间的确切关系的问题,从而使基于观测的研究与通过数值模拟和危险评估进行的定量预测更有力地结合在一起。此外,成核理论在许多学科中都很重要,例如化学工程和材料科学。由于这个项目将整合经典成核理论被发现不足的其他领域的最新进展,它将推动最新技术的发展,并有可能影响其他学科。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Helge Gonnermann其他文献

Helge Gonnermann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Helge Gonnermann', 18)}}的其他基金

Collaborative Research: The interplay of surface evolution, shallow magmatism, a large hydrothermal system, and hazards at Puyehue-Cordon Caulle Volcanic Complex, Chile
合作研究:智利 Puyehue-Cordon Caulle 火山群地表演化、浅层岩浆作用、大型热液系统和灾害的相互作用
  • 批准号:
    2317733
  • 财政年份:
    2023
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Continuing Grant
Opening and reestablishment of Kilauea's lower east rift zone magma plumbing system during the 2018 eruption
2018 年喷发期间基拉韦厄东部裂谷带岩浆管道系统的开放和重建
  • 批准号:
    2114382
  • 财政年份:
    2022
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Chamber or Conduit - Constraining Explosive Through Effusive Eruption at Cordon Caulle, Chile 2011/12
合作研究:室或管道 - 通过在智利 Cordon Caulle 的喷发来限制爆炸物 2011/12
  • 批准号:
    1824252
  • 财政年份:
    2018
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Heterogeneous Bubble Dynamics in Volcanic Conduits
合作研究:火山管道中的非均质气泡动力学
  • 批准号:
    1250451
  • 财政年份:
    2013
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Mauna Loa's and Kilauea's magmatic systems from physics-based modeling
合作研究:基于物理建模的莫纳罗亚火山和基拉韦厄火山岩浆系统的动力学
  • 批准号:
    1331088
  • 财政年份:
    2013
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Hawaiian and Subplinian Basaltic Volcanism: Constraints on Eruption Dynamics from Kilauea
合作研究:夏威夷和亚普林阶玄武岩火山活动:基拉韦厄火山喷发动力学的限制
  • 批准号:
    1145187
  • 财政年份:
    2012
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
IDR/Collaborative Research: Activities in Thermal Spray Processing and Volcanology
IDR/合作研究:热喷涂加工和火山学方面的活动
  • 批准号:
    1015069
  • 财政年份:
    2010
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
Reconstructing Explosive Magma Vesiculation
重建爆炸岩浆囊泡
  • 批准号:
    1019872
  • 财政年份:
    2010
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329909
  • 财政年份:
    2024
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
  • 批准号:
    2329674
  • 财政年份:
    2023
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
  • 批准号:
    2329675
  • 财政年份:
    2023
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials
合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中
  • 批准号:
    2231077
  • 财政年份:
    2023
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
  • 批准号:
    2305882
  • 财政年份:
    2023
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Self-Driving Continuous Fuzzing
协作研究:SaTC:核心:小型:自驱动连续模糊测试
  • 批准号:
    2247880
  • 财政年份:
    2023
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Continuing Grant
Collaborative Research: Using a Self-Guided Online Intervention to Address Student Fear of Negative Evaluation in Active Learning Undergraduate Biology Courses
合作研究:利用自我引导的在线干预来解决学生在主动学习本科生物学课程中对负面评价的恐惧
  • 批准号:
    2409880
  • 财政年份:
    2023
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Supporting Chemistry Students’ Science Practice Self-Efficacy
合作研究:支持化学学生的科学实践自我效能感
  • 批准号:
    2236032
  • 财政年份:
    2023
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了