Geodesic Paths in Shape Space
形状空间中的测地线路径
基本信息
- 批准号:212212052
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project provides robust and flexible tools for the quantitative analysis of shapes in the interplay between applied geometry and numerical simulation. Here, shapes are curved surfaces that physically represent shell-type geometries. In isogeometric analysis, one faces a wide range of low- and moderate-dimensional descriptions of complicated and realistic geometries. Thus, the geometric description of shapes is flexible, ranging from simple piecewise linear to subdivision-generated spline type surface representations. The fundamental tool for a quantitative shape analysis is the computation of a distance between two shapes as objects in a high- or even infinite-dimensional Riemannian shape space. Beyond the Riemannian distance, we develop a fully fletched Riemannian calculus including the geometric exponential map, the geometric logarithm, parallel transport, covariant derivative as well as Riemannian splines. Furthermore, we investigate the statistical analysis of large data sets of shapes. We aim at applying these methods in the context of surface animation in computer graphics and geometry processing. In the final year of the NFN Geometry+Simulation we will continue to pursue the following approaches. This is an updated description of the project's objectives following the original application of the corresponding subproject in the NFN Geometry+Simulation submitted to FWF: (A) a principal geodesic analysis (PGA) of discrete shells based on nonlinear rigid body motion invariant coordinates,(B) a reduced bases approach derived from the PGA for real-time manipulation and animation of detailed triangular models,(C) an isogeometric approach for the discretization of elastic shell energies based on a G^1 multi-patch B-spline parametrization,(D) the implementation of these nonlinear energies in the software framework G+Smo developed project--overarching within the NFN.
该项目为应用几何学和数值模拟之间的相互作用中的形状的定量分析提供了可靠和灵活的工具。在这里,形状是物理表示壳类型几何图形的曲面。在等距分析中,人们面临着对复杂和真实几何图形的广泛的低维和中维描述。因此,形状的几何描述是灵活的,从简单的分段线性到细分生成的样条型曲面表示。定量形状分析的基本工具是计算高维甚至无限维黎曼形状空间中作为对象的两个形状之间的距离。在黎曼距离之外,我们发展了一个包含几何指数映射、几何对数、平行传输、协变导数以及黎曼样条的完全斑点黎曼演算。此外,我们还研究了形状大数据集的统计分析。我们的目标是将这些方法应用于计算机图形学和几何处理中的曲面动画。在NFN几何+模拟的最后一年,我们将继续追求以下方法。这是在提交给FWF的NFN几何+模拟中的相应子项目最初应用之后对项目目标的更新描述:(A)基于非线性刚体运动不变坐标的离散壳的主测地线分析(PGA),(B)从PGA派生的用于实时操纵详细三角形模型和动画的减基方法,(C)用于弹性壳能量离散化的等几何方法,基于G^1多面片B-Spline参数化,(D)在软件框架G+SMO中实施这些非线性能量,在NFN内开发项目总体。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shape-Aware Matching of Implicit Surfaces Based on Thin Shell Energies
- DOI:10.1007/s10208-017-9357-9
- 发表时间:2015-09
- 期刊:
- 影响因子:0
- 作者:José A. Iglesias;M. Rumpf;O. Scherzer
- 通讯作者:José A. Iglesias;M. Rumpf;O. Scherzer
Smooth interpolation of key frames in a Riemannian shell space
- DOI:10.1016/j.cagd.2017.02.008
- 发表时间:2017-02
- 期刊:
- 影响因子:0
- 作者:P. Huber;R. Perl;M. Rumpf
- 通讯作者:P. Huber;R. Perl;M. Rumpf
Shell PCA: Statistical Shape Modelling in Shell Space
- DOI:10.1109/iccv.2015.195
- 发表时间:2015-12
- 期刊:
- 影响因子:0
- 作者:Chao Zhang-;Behrend Heeren;M. Rumpf;W. Smith
- 通讯作者:Chao Zhang-;Behrend Heeren;M. Rumpf;W. Smith
Splines in the Space of Shells
壳空间中的样条线
- DOI:10.1111/cgf.12968
- 发表时间:2016
- 期刊:
- 影响因子:2.5
- 作者:B. Heeren;M. Rumpf;P. Schröder;M. Wardetzky;B. Wirth
- 通讯作者:B. Wirth
Principal Geodesic Analysis in the Space of Discrete Shells
- DOI:10.1111/cgf.13500
- 发表时间:2018-08
- 期刊:
- 影响因子:2.5
- 作者:Behrend Heeren;Chao Zhang-;M. Rumpf;W. Smith
- 通讯作者:Behrend Heeren;Chao Zhang-;M. Rumpf;W. Smith
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Martin Rumpf其他文献
Professor Dr. Martin Rumpf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Martin Rumpf', 18)}}的其他基金
Registrierung der Hirnrindengeometrie, basierend auf digitaler Photographie und dreidimensionalen MRT-Daten
基于数字摄影和三维 MRI 数据的大脑皮层几何结构配准
- 批准号:
53244379 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Multiscale Simulation and Validation of the Elastic Microstructure of Vertebral Bodies
椎体弹性微观结构的多尺度模拟与验证
- 批准号:
5446327 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
Multiple scales in phase separating systems with elastic misfit
具有弹性失配的相分离系统中的多尺度
- 批准号:
5388724 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Priority Programmes
Anisotropic curature flow in surface processing
表面处理中的各向异性固化流动
- 批准号:
5396708 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Research Grants
Analysis and postprocessing of space-time compressed flow computations
时空压缩流计算分析与后处理
- 批准号:
5330316 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Priority Programmes
Morphological methods in 3D image fusion and sequence analysis in medical imaging
医学成像中 3D 图像融合和序列分析中的形态学方法
- 批准号:
5330078 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
Mixed Quantum-Classical Semiclassical Theory: Finding Reaction Paths in Open Quantum Systems
混合量子经典半经典理论:寻找开放量子系统中的反应路径
- 批准号:
2404809 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Paths to primacy: How rising powers win domination in Asia, 1500-present
通往霸主之路:崛起中的大国如何赢得亚洲统治地位(1500 年以来)
- 批准号:
FT230100547 - 财政年份:2024
- 资助金额:
-- - 项目类别:
ARC Future Fellowships
Carbon Pricing Policy: Paths to Carbon Neutrality
碳定价政策:碳中和之路
- 批准号:
24K16360 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
The University of Essex and Pursuing Independent Paths Ltd KTP 23_24 R3
埃塞克斯大学和追求独立路径有限公司 KTP 23_24 R3
- 批准号:
10084131 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Knowledge Transfer Network
PaTHS - Pastoral Tracks Heading South: The evolution of the droveways (tratturi) in Central-Southern Italy
PaTHS - 向南的田园小径:意大利中南部车道 (tratturi) 的演变
- 批准号:
EP/Y02947X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
ARCHCROP: Crossing Paths: Millet, Wheat and Cultural Exchanges in the Inner Asian Mountain Corridor, China
ARCHCROP:交叉路径:中国内亚山地走廊的小米、小麦和文化交流
- 批准号:
EP/Y027809/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402284 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
AI-Powered Learning: Increasing User Retention and Productivity Through Personalised Learning Paths
人工智能驱动的学习:通过个性化学习路径提高用户保留率和生产力
- 批准号:
10079009 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Defining Reaction Paths for Chalcogenide Materials Discovery
定义硫族化物材料发现的反应路径
- 批准号:
2305731 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant