Real time quantitative assessment of oxidative stress as a marker for differential nanoparticle toxicity

氧化应激的实时定量评估作为不同纳米颗粒毒性的标志

基本信息

  • 批准号:
    1336493
  • 负责人:
  • 金额:
    $ 30.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

CBET - 1336493 Understanding the interaction of nanoparticles (NPs) with biological systems and assessing how exposure to NPs affects biological and chemical mechanisms in living systems is of critical importance. One of the key nanotoxicity mechanisms is the potential for induction of oxidative stress by generating reactive oxygen (ROS) and nitrogen (RNS) species. However, assessing the extent of NPs induced oxidative stress has been a challenge as most ROS and RNS are highly reactive and short lived and therefore difficult to detect. This proposal addresses this fundamental problem by developing methodologies for direct real-time assessment of ROS and RNS species at the NPs accumulation site in a living aquatic system, zebrafish embryos and 2 week juveniles,and correlating the observed oxidative effects with their cytotoxicity at the tissue and organ level including alteration of the oxidative/anti-oxidative biological mechanism, cellular damage, inflammation induction, and apoptosis.Intellectual Merit :Exposure of living systems to NPs may alter the antioxidant-defense system and redox mechanisms in cells, tissues and organs. The goal of this proposal is to gain fundamental understanding of the mechanism of oxidative stress response due to exposure to engineered NPs in an intact live organism: zebrafish. Research work will focus on the engineering design of new nanotoxicity probes for direct detection of ROS/RNS and their use to establish whether NPs generate free radicals or change the physiological oxidative status of organs that accumulate NPs due to toxicity. Results will provide local concentration profiles of ROS/RNS in the zebrafish intestine following exposure to various doses of NPs. Research will identify properties of the NPs that regulate interactions with ROS/RNS species and determine the role of surface reactivity and reaction kinetics. Cell and tissue damage, malformations and viability will be studied and related with ROS/RNS production in zebrafish. Fundamental understanding on how the physicochemical and surface properties of the particles change in contact with reactive ROS/RNS species, quantified by in vitro electrochemical measurements of single NP collision studies with microelectrodes, will also be used to establish predictive models of NPs induced oxidative stress. The technology can be widely used to measure oxidative status in a variety of other organs, cell cultures, tissues, and other environmental conditions. The data will be used for risk assessment of NPs which will facilitate development of a new paradigm for predicting NPs induced oxidative stress using a relatively simple, inexpensive and rapid screening method. The success of this method would enable faster high throughput screening of NPs, as an alternative to animal experimentation. Broader Impacts :The project will create new tools and methodologies for nanotoxicity assessment and generate fundamental knowledge that can solve key questions in understanding the effect of NPs exposure to the environment and living systems, specifically those related to oxidative stress. The results of the proposed studies will provide an "oxidative profile" of the behavior and transport of NPs in biological systems starting from the material characteristics to organ and tissue response. It will enable development of novel nanotoxicity probes for direct assessment of NPs induced oxidative stress and permit identification of the key factors in the NPs surface properties and reactivity that can be used to predict toxicity, permit targeted screening, and allow controlled generation of new, safer NPs based on structure-toxicity information. Understanding these mechanisms may provide guidelines for modifications to NPs to prevent this type of damage. Moreover, this effort will enable the education and training of undergraduate and graduate students, especially minorities and women, in the field of nanotoxicology and sustainable material development at the interface with biological systems, and make them aware of the potential implications and risks of the newly developed engineered materials in the environment, ecosystem and biological systems. Concepts of oxidative stress and environmental and health impacts will be introduced in local high schools in upstate New York. A course on environmental health and safety implications of nanotechnology will be created for the interdisciplinary Biotechnology, Materials Science and the Environmental Science and Engineering programs at Clarkson University, and broadly disseminated to nearby 4-year colleges and open access on the Clarkson website.
了解纳米颗粒(NPs)与生物系统的相互作用,并评估暴露于NPs如何影响生命系统中的生物和化学机制是至关重要的。其中一个关键的纳米毒性机制是通过产生活性氧(ROS)和氮(RNS)来诱导氧化应激的潜力。然而,评估NPs诱导氧化应激的程度一直是一个挑战,因为大多数ROS和RNS具有高活性且寿命短,因此难以检测到。本研究旨在解决这一基本问题,通过开发直接实时评估活体水生系统、斑马鱼胚胎和2周幼鱼NPs积累位点的ROS和RNS物种的方法,并将观察到的氧化效应与组织和器官水平的细胞毒性联系起来,包括氧化/抗氧化生物机制的改变、细胞损伤、炎症诱导和凋亡。智力优势:生命系统暴露于NPs可能会改变细胞、组织和器官的抗氧化防御系统和氧化还原机制。本提案的目标是获得氧化应激反应机制的基本理解,由于暴露于工程NPs在一个完整的活生物体:斑马鱼。研究工作将集中在直接检测ROS/RNS的新型纳米毒性探针的工程设计,以及它们的应用,以确定NPs是否产生自由基或由于毒性而改变积累NPs的器官的生理氧化状态。结果将提供暴露于不同剂量NPs后斑马鱼肠道中ROS/RNS的局部浓度谱。研究将确定调节与ROS/RNS物种相互作用的NPs的特性,并确定表面反应活性和反应动力学的作用。将研究斑马鱼细胞和组织的损伤、畸形和生存能力与ROS/RNS产生的关系。通过微电极对单NP碰撞研究的体外电化学测量,对颗粒的物理化学和表面性质在与活性ROS/RNS物种接触时如何变化的基本了解,也将用于建立NPs诱导氧化应激的预测模型。该技术可广泛用于测量各种其他器官、细胞培养、组织和其他环境条件下的氧化状态。这些数据将用于NPs的风险评估,这将有助于开发一种使用相对简单、廉价和快速筛选方法预测NPs诱导氧化应激的新范式。该方法的成功将使NPs的高通量筛选更快,作为动物实验的替代方案。更广泛的影响:该项目将为纳米毒性评估创造新的工具和方法,并产生基础知识,以解决理解NPs暴露于环境和生命系统的影响的关键问题,特别是与氧化应激有关的问题。拟议研究的结果将提供生物系统中NPs的行为和运输的“氧化概况”,从材料特性到器官和组织反应。它将促进新型纳米毒性探针的开发,用于直接评估NPs诱导的氧化应激,并允许鉴定NPs表面性质和反应性的关键因素,这些因素可用于预测毒性,允许靶向筛选,并允许基于结构-毒性信息控制生成新的,更安全的NPs。了解这些机制可以为修改NPs提供指导,以防止这种类型的损害。此外,这项工作将使本科生和研究生,特别是少数民族和妇女,在纳米毒理学和可持续材料开发与生物系统界面领域的教育和培训成为可能,并使他们意识到新开发的工程材料在环境、生态系统和生物系统中的潜在影响和风险。氧化应激和环境与健康影响的概念将在纽约州北部的当地高中介绍。将为克拉克森大学跨学科的生物技术、材料科学和环境科学与工程专业开设一门关于纳米技术对环境健康和安全影响的课程,并广泛传播到附近的四年制大学,并在克拉克森网站上开放。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emanuela Andreescu其他文献

Emanuela Andreescu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emanuela Andreescu', 18)}}的其他基金

PFI-TT: Development of Easy-to-Use Affordable Sensors for Rapid Detection of Environmental Pollutants
PFI-TT:开发易于使用且经济实惠的传感器,用于快速检测环境污染物
  • 批准号:
    2141017
  • 财政年份:
    2022
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
Collaborative Research: A multiplexed microbiosensing platform for understanding real time neurotransmitter dynamics in the brain
合作研究:用于了解大脑中实时神经递质动态的多重微生物传感平台
  • 批准号:
    2042544
  • 财政年份:
    2021
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
Scalable Manufacturing of Nanostructured Bioassemblies for Low-Cost Portable Biosensors
用于低成本便携式生物传感器的纳米结构生物组件的可扩展制造
  • 批准号:
    1561491
  • 财政年份:
    2016
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
Single Particle Investigation of Environmental Chemical Processes using Nano-Impact Collision Techniques
使用纳米碰撞碰撞技术对环境化学过程进行单粒子研究
  • 批准号:
    1610281
  • 财政年份:
    2016
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering Design of Oxygen Rich Surfaces for Bioelectrodes
合作研究:生物电极富氧表面的工程设计
  • 批准号:
    1200180
  • 财政年份:
    2012
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
CAREER: Inorganic Nanoparticles with Biological Properties: Preparation, Characterization and Sensing Applications
职业:具有生物特性的无机纳米颗粒:制备、表征和传感应用
  • 批准号:
    0954919
  • 财政年份:
    2010
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Continuing Grant
Collaborative : Bringing Nanotechnology into the Classroom: From a Doctoral Insitiution to Four and Two Year Colleges
协作:将纳米技术带入课堂:从博士机构到四年制和两年制大学
  • 批准号:
    0737395
  • 财政年份:
    2008
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Biomagnetic Glasses: Preparation, Characterization and Biosensor Applications
合作研究:生物磁性玻璃:制备、表征和生物传感器应用
  • 批准号:
    0804506
  • 财政年份:
    2008
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Continuing Grant
IRES: U.S.-France International Research Experience on Toxicity Biosensors: Towards Novel Sensor Architectures, Detection Schemes and Applications
IRES:美国-法国毒性生物传感器国际研究经验:迈向新型传感器架构、检测方案和应用
  • 批准号:
    0727861
  • 财政年份:
    2007
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant

相似国自然基金

SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
  • 批准号:
    82360504
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
  • 批准号:
    82305023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
  • 批准号:
    62171167
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
  • 批准号:
    31971706
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
高频数据波动率统计推断、预测与应用
  • 批准号:
    71971118
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
Time-of-Flight深度相机多径干扰问题的研究
  • 批准号:
    61901435
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
  • 批准号:
    71771224
  • 批准年份:
    2017
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Integration of 5-ALA Fluorescence Lifetime Imaging with Stereotactic Surgical Navigation for Quantitative Real-Time Spatial Localization of Tumor During Neurosurgical Procedures
5-ALA 荧光寿命成像与立体定向手术导航相结合,用于神经外科手术过程中肿瘤的定量实时空间定位
  • 批准号:
    10578584
  • 财政年份:
    2023
  • 资助金额:
    $ 30.5万
  • 项目类别:
Quantitative approaches for mapping the real-time evolution of the gut microbiota
绘制肠道微生物群实时进化的定量方法
  • 批准号:
    10684953
  • 财政年份:
    2022
  • 资助金额:
    $ 30.5万
  • 项目类别:
Replacement quantitative real-time PCR detection system for studies in parasitology, animal physiology and environmental toxicology
用于寄生虫学、动物生理学和环境毒理学研究的替代定量实时 PCR 检测系统
  • 批准号:
    RTI-2022-00063
  • 财政年份:
    2021
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Research Tools and Instruments
Real-time intracellular monitoring of microRNAs in human stem cell-derived insulin producing organoids
实时细胞内监测人类干细胞衍生的胰岛素产生类器官中的 microRNA
  • 批准号:
    10296294
  • 财政年份:
    2021
  • 资助金额:
    $ 30.5万
  • 项目类别:
CAREER: Wastewater Counts: Real-time de facto Population Estimation for Quantitative Wastewater-based Epidemiology
职业:废水计数:基于废水的定量流行病学的实时实际人口估计
  • 批准号:
    2047470
  • 财政年份:
    2021
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Continuing Grant
Enabling Quantitative Real-Time Detection of Volatile Electrochemical and Photoelectrochemical Reaction Products with an ElectroChemical Mass Spectrometer (EC-MS)
使用电化学质谱仪 (EC-MS) 实时定量检测挥发性电化学和光电化学反应产物
  • 批准号:
    RTI-2021-00340
  • 财政年份:
    2020
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Research Tools and Instruments
Real-time quantitative prediction of cerebral-aneurysm growth with thrombosis-stratified vascular remodeling
通过血栓分层血管重塑实时定量预测脑动脉瘤生长
  • 批准号:
    19H04455
  • 财政年份:
    2019
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantitative real-time monitoring of rail infrastructure
铁路基础设施定量实时监测
  • 批准号:
    2745589
  • 财政年份:
    2019
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Studentship
CCF: Medium: Enabling Real-Time Quantitative Decision Making over Streaming Data
CCF:中:通过流数据实现实时定量决策
  • 批准号:
    1763514
  • 财政年份:
    2018
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Continuing Grant
Demonstration of quantitative attenuation correction method in real-time monitoring of therapeutic particle beams
治疗粒子束实时监测中定量衰减校正方法的演示
  • 批准号:
    18K12124
  • 财政年份:
    2018
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了