EAGER: Towards Atomic-Scale Imaging of Hybrid Nanomaterials

EAGER:迈向混合纳米材料的原子级成像

基本信息

  • 批准号:
    1341391
  • 负责人:
  • 金额:
    $ 24.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:Heterostructures with at least one single digit nanometer dimension, and participation of organic molecules, are emerging as exciting alternatives to inorganic semiconductors and insulators for low cost, printable, and flexible electronics. Interfaces in such materials are integral to function, but are becoming increasingly complex in structure and chemistry. Quantitative imaging of all-organic or hybrid organic/inorganic nanomaterials is a formidable challenge to established electron optical methods. Laser-pulsed atom probe tomography (APT) is emerging as a potentially transformative analytical tool. In this project, supported by the NSF Solid State and Materials Chemistry Program, the experience of PI Joester will be leveraged in sample preparation, APT operation, and spectral interpretation to establish the scope of APT for the atomic-scale characterization of emergent organic and organic/inorganic hybrid materials from single nanoparticles to devices. Specifically, it is proposed to investigate model systems for three important classes of materials: I) DNA-wrapped single wall carbon nanotubes (SWNT) as representatives of self-assembled building blocks for molecular electronic/optical devices. II) Self-assembled nano-dielectrics (SANDs) as examples for organic thin films in electronic applications. III) Ferritin nanocages with metallic and metal oxide nanoparticle payloads as examples for hybrid nanomaterials. In each case, APT has the potential to greatly facilitate future structure-function analyses. For example, APT imaging of DNA-wrapped SWNT will enable systematic investigation of impact of DNA sequence and nanotube chirality on the complex geometry and electronic properties. Outcomes will provide input for rational design of single chirality SWNT purification schemes and programmed assembly of CNTFET devices. Visualizing SAND atomic scale structure will dramatically enhance the ability to correlate processing, defect formation, and device performance. Model systems were selected to generate maximum synergy with existing research efforts at the NU MRSEC and the International Institute for Nanotechnology at NU. Proposed activities include research training for young investigators from undergraduates to postdocs and a summer school in atom probe tomography to disseminate hands-on skills beyond the project team.NON-TECHNICAL SUMMARY:Rapid materials innovation is integral to enhancing US competitiveness in flexible/printable electronics, ultra-low power, or ultra-high speed circuits for emergent applications. Northwestern University is leading the development of all-organic and low dimensional organic/inorganic heterostructures such as carbon nanotube field effect transistors (CNTFETs) or self-assembled nanodielectric (SAND) thin films. However, shortcomings of current analytical tools hinder realization of the potential of these unconventional electronic materials. Laser-pulsed atom probe tomography (APT), an atomic scale quantitative chemical imaging tool with unrivaled spatial resolution and unbiased chemical selectivity, may rise to the challenge. In this project, funded by the NSF Solid State and Materials Chemistry Program, it is proposed to leverage the experience of PI Joester in APT to investigate model systems for 0D, 1D, and 2D hybrid electronic nanomaterials in close collaboration with leading experts and centers at NU. Outcomes of the proposed work will have immediate impact by facilitating structure-function studies and greatly accelerating innovation at NU and its partner institutions. Research areas impacted at NU include energy materials, nano-electronics, sensors, optical, and spintronic devices. In addition to training the next generation of scientists and engineers, the impact of the proposed activities will be significantly broadened by providing hands-on training in sample preparation techniques and APT to users outside the project team in a summer school on APT.
具有至少一个个位数纳米尺寸和有机分子参与的异质结构正在成为无机半导体和绝缘体的令人兴奋的替代品,用于低成本,可印刷和柔性电子产品。这些材料中的界面是功能不可或缺的,但在结构和化学上变得越来越复杂。全有机或混合有机/无机纳米材料的定量成像是对现有电子光学方法的巨大挑战。激光脉冲原子探针层析成像(APT)正在成为一种潜在的变革性分析工具。在该项目中,由NSF固态和材料化学计划支持,PI Joester的经验将在样品制备,APT操作和光谱解释中发挥作用,以建立APT的范围,用于从单个纳米颗粒到设备的新兴有机和有机/无机混合材料的原子尺度表征。具体而言,它建议调查模型系统的三个重要类别的材料:I)DNA包裹的单壁碳纳米管(SWNT)作为分子电子/光学器件的自组装积木的代表。II)作为电子应用中的有机薄膜的实例的自组装纳米粒子(SAND)。III)具有金属和金属氧化物纳米颗粒有效载荷的铁蛋白纳米笼作为混合纳米材料的实例。在每种情况下,APT都有可能极大地促进未来的结构-功能分析。例如,DNA包裹的单壁碳纳米管的APT成像将能够系统地研究DNA序列和纳米管手性对复杂几何形状和电子性质的影响。研究结果将为单手性单壁碳纳米管纯化方案的合理设计和CNTFET器件的程序化组装提供参考。可视化SAND原子尺度结构将显著增强将工艺、缺陷形成和器件性能相关联的能力。选择模型系统以与NU MRSEC和NU国际纳米技术研究所的现有研究工作产生最大的协同作用。拟议的活动包括研究培训年轻的研究人员从本科生到博士后和暑期学校在原子探针断层扫描传播实践技能超出项目team.Non-Technical摘要:快速材料创新是不可或缺的,以提高美国的竞争力,在柔性/可印刷电子,超低功耗,或超高速电路的紧急应用。西北大学正在引领全有机和低维有机/无机异质结构的发展,如碳纳米管场效应晶体管(CNTFFET)或自组装纳米电介质(SAND)薄膜。然而,目前分析工具的缺点阻碍了这些非传统电子材料潜力的实现。激光脉冲原子探针层析成像(APT),一个原子尺度的定量化学成像工具,具有无与伦比的空间分辨率和无偏的化学选择性,可能会上升的挑战。在这个由NSF固态和材料化学计划资助的项目中,建议利用PI Joester在APT中的经验,与NU的领先专家和中心密切合作,研究0 D,1D和2D混合电子纳米材料的模型系统。拟议工作的结果将通过促进结构-功能研究和大大加速NU及其合作机构的创新产生直接影响。在NU影响的研究领域包括能源材料,纳米电子,传感器,光学和自旋电子器件。除了培训下一代科学家和工程师外,还将通过在关于APT的暑期学校中向项目小组以外的用户提供样品制备技术和APT的实践培训,大大扩大拟议活动的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Derk Joester其他文献

Visualizing Structure and Elemental Content in Complex Materials and Biological Samples by Hard X-ray Microscopy
通过硬 X 射线显微镜可视化复杂材料和生物样品中的结构和元素含量
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    S. Vogt;S. Gleber;D. Vine;L. Trahey;L. Finney;J. Ward;J. Maser;Barry P. Lai;Chris Jacobsen;Lee Makowski;M. D. D. Jonge;M. Krejci;Derk Joester
  • 通讯作者:
    Derk Joester
Characterization of mineralized tissues by atom probe tomography
  • DOI:
    10.1557/s43578-024-01472-9
  • 发表时间:
    2024-12-20
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Xingchen Zhao;Derk Joester
  • 通讯作者:
    Derk Joester

Derk Joester的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Derk Joester', 18)}}的其他基金

Bioengineering Single Crystal Growth
生物工程单晶生长
  • 批准号:
    1905982
  • 财政年份:
    2020
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
GRC/GRS on Biomineralization: Fundamental Biotic and Abiotic Mechanisms
GRC/GRS 关于生物矿化:基本生物和非生物机制
  • 批准号:
    1827447
  • 财政年份:
    2018
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
WORKSHOP: 2016 GRS/GRC on Biomineralization
研讨会:2016 年 GRS/GRC 生物矿化
  • 批准号:
    1638860
  • 财政年份:
    2016
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Bioengineering Single Crystal Growth
生物工程单晶生长
  • 批准号:
    1508399
  • 财政年份:
    2015
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Continuing Grant
The response of primary mesenchyme cells to VEGF
原代间充质细胞对VEGF的反应
  • 批准号:
    1456837
  • 财政年份:
    2015
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Continuing Grant
MRI: Development of a Cryogenic Sample-Preparation Instrument (NU CRYOCLUSTER)
MRI:低温样品制备仪器 (NU CRYOCLUSTER) 的开发
  • 批准号:
    1229693
  • 财政年份:
    2012
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Bioengineering Single Crystal Growth
生物工程单晶生长
  • 批准号:
    1106208
  • 财政年份:
    2011
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Continuing Grant
Bioengineering Single Crystal Growth
生物工程单晶生长
  • 批准号:
    0805313
  • 财政年份:
    2008
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Continuing Grant

相似海外基金

Towards deterministic atomic scale manufacturing of next-generation quantum devices
迈向下一代量子器件的确定性原子尺度制造
  • 批准号:
    EP/X021963/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Fellowship
Electromagnetically Induced Transparency with Rydberg Atoms - Towards an Atomic Radio for Wireless Communications
里德伯原子的电磁感应透明性 - 面向无线通信的原子无线电
  • 批准号:
    EP/W009404/1
  • 财政年份:
    2022
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Research Grant
Towards Atomic Resolution Transmission Electron Microscopy Imaging of Electron-Beam-Sensitive Organic 2D Materials (B03)
电子束敏感有机二维材料的原子分辨率透射电子显微镜成像 (B03)
  • 批准号:
    443793239
  • 财政年份:
    2020
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Collaborative Research Centres
Three-dimensional atomic-scale control of co-doped elemental distributions towards high-efficiency luminescent devices
高效发光器件共掺杂元素分布的三维原子尺度控制
  • 批准号:
    20K04613
  • 财政年份:
    2020
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical study of nonlinear optical responses of ultracold atomic systems: towards a high-resolution coherent multidimensional spectroscopy investigation of quantum many-body effects
超冷原子系统非线性光学响应的​​理论研究:量子多体效应的高分辨率相干多维光谱研究
  • 批准号:
    19K14638
  • 财政年份:
    2019
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
DMREF: Collaborative Research: Machine learning exploration of atomic heterostructures towards perfect light absorber and giant piezoelectricity
DMREF:协作研究:原子异质结构的机器学习探索完美的光吸收体和巨压电性
  • 批准号:
    1921818
  • 财政年份:
    2019
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Machine learning exploration of atomic heterostructures towards perfect light absorber and giant piezoelectricity
DMREF:协作研究:原子异质结构的机器学习探索完美的光吸收体和巨压电性
  • 批准号:
    1921629
  • 财政年份:
    2019
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Engineering approaches towards atomic imaging of bacterial cells
细菌细胞原子成像的工程方法
  • 批准号:
    DP180103955
  • 财政年份:
    2018
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Discovery Projects
Towards an understanding of friction at electrodes on the atomic scale
在原子尺度上理解电极摩擦
  • 批准号:
    288879147
  • 财政年份:
    2016
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Research Grants
Towards Precision Measurements of Atomic Parity Violation Using Two-Pathway Coherent Control
使用两路相干控制精确测量原子宇称不守恒
  • 批准号:
    1607603
  • 财政年份:
    2016
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了