DMREF: Collaborative Research: Machine learning exploration of atomic heterostructures towards perfect light absorber and giant piezoelectricity
DMREF:协作研究:原子异质结构的机器学习探索完美的光吸收体和巨压电性
基本信息
- 批准号:1921818
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractNontechnical Description: Recent discovery of atomically thin two-dimensional (2D) materials, such as graphene, transition metal dichalcogenides, black phosphorus, among many others, has opened new opportunities to atomic level materials control through vertical stacking, i.e. 2D heterostructure. The art of 2D heterostructure materials design is at its nascent stage, and with the potential library of 2D monolayers that we can access experimentally amounting to about 1000, just the mere lowest energy stacking of N monolayers would then lead to 1000N possible heterostructures. Our program seeks a transformational impact on the discovery process of useful 2D heterostructures, such as perfect light absorption in the visible spectrum and giant piezoelectricity, through novel machine-learning (ML)-guided density functional theory (DFT). We have assembled a team comprising of experts in data science and the application of ML, modeling of 2D materials and their optical properties, molecular beam epitaxial growth of 2D heterostructures, and materials and device characterization. The successful demonstration of these new designer 2D heterostructures would usher in a new era of efficient and purposeful materials design methodology. A three-pronged broadening participation program for all participating groups in this proposal is planned, which includes undergraduate research, community outreach, and summer programs.Technical Description: Research in two-dimensional atomic crystals has recently focused on their heterostructures, and the advancements in this emerging field has already led to fascinating discoveries such as superconductivity and magnetism. However, thousands of different 2D layered materials and their permutations amount to almost infinite heterostructure combinations. This research will develop a novel ML-guided DFT framework, in conjunction with physically motivated atomistic descriptors, which applies data science in the search for designer heterostructures with targeted properties. As a proof-of-concept, we will demonstrate heterostructures with perfect light absorption through optimizing the band nesting between the filled and empty bands as well as giant piezoelectricity through engineering the electronegativity dipole moments. These heterostructures identified with the targeted properties will be grown with ultra-clean state-of-the-art MBE approaches, and their absorption and piezoelectric coefficients characterized. Corroboration between experiments and theory will then instruct on possible improvements to the proposed ML and DFT models and overall strategy. The successful demonstration of these new designer 2D heterostructures would usher in a new era of efficient and purposeful materials design methodology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摘要非技术描述:最近发现的原子级薄的二维(2D)材料,诸如石墨烯、过渡金属二硫属化物、黑磷等,已经为通过垂直堆叠(即,2D异质结构)进行原子级材料控制打开了新的机会。2D异质结构材料设计的艺术处于其新生阶段,并且我们可以在实验上访问的2D单层的潜在库达到约1000个,仅仅是N个单层的最低能量堆叠将导致1000 N可能的异质结构。我们的计划旨在通过新的机器学习(ML)指导的密度泛函理论(DFT)对有用的2D异质结构的发现过程产生变革性影响,例如可见光谱中的完美光吸收和巨大的压电性。我们组建了一个由数据科学和ML应用、2D材料及其光学特性建模、2D异质结构的分子束外延生长以及材料和器件表征方面的专家组成的团队。这些新的设计师2D异质结构的成功演示将迎来一个高效和有目的的材料设计方法的新时代。该项目将从本科生研究、社区拓展和暑期项目三个方面扩大参与范围。技术说明:二维原子晶体的研究主要集中在异质结构上,这一新兴领域的进展已经导致了超导和磁性等令人着迷的发现。然而,数千种不同的2D层状材料及其排列相当于几乎无限的异质结构组合。这项研究将开发一种新的ML引导的DFT框架,结合物理动机的原子描述符,应用数据科学搜索具有目标属性的设计师异质结构。作为概念验证,我们将通过优化填充带和空带之间的带嵌套来展示具有完美光吸收的异质结构,以及通过设计电负性偶极矩来展示巨大的压电性。这些异质结构确定与目标属性将生长与超清洁国家的最先进的MBE方法,其吸收和压电系数的特点。实验和理论之间的相互印证将指导对所提出的ML和DFT模型以及整体策略的可能改进。这些新型设计师二维异质结构的成功演示将开创一个高效和有目的的材料设计方法的新时代。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A perspective on the doping of transition metal dichalcogenides for ultra-scaled transistors: Challenges and opportunities
- DOI:10.1063/5.0133064
- 发表时间:2023-04
- 期刊:
- 影响因子:4
- 作者:Rehan Younas;Guanyu Zhou;C. Hinkle
- 通讯作者:Rehan Younas;Guanyu Zhou;C. Hinkle
Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions
- DOI:10.1038/s41563-023-01704-z
- 发表时间:2023-11
- 期刊:
- 影响因子:41.2
- 作者:Ji-Hoon Kang;Heechang Shin;Ki Seok Kim;M. Song;Doyoon Lee;Yuan Meng;Chanyeol Choi;J. Suh;Beom Jin Kim;Hyunseok Kim;Anh Tuan Hoang;Bo-In Park;Guanyu Zhou;Suresh Sundaram;P. Vuong;Jiho Shin;Jinyeong Choe;Zhihao Xu;Rehan Younas;Justin S. Kim;Sangmoon Han;Sangho Lee;Sun Ok Kim;Beomseok Kang;Seungju Seo;Hyojung Ahn;Seunghwan Seo;Kate Reidy;Eugene Park;Sungchul Mun;Min-Chul Park;Suyoun Lee;Hyung-Jun Kim;Hyun S. Kum;Peng Lin;Christopher Hinkle;Abdallah Ougazzaden;Jong-Hyun Ahn;Jeehwan Kim;S. Bae
- 通讯作者:Ji-Hoon Kang;Heechang Shin;Ki Seok Kim;M. Song;Doyoon Lee;Yuan Meng;Chanyeol Choi;J. Suh;Beom Jin Kim;Hyunseok Kim;Anh Tuan Hoang;Bo-In Park;Guanyu Zhou;Suresh Sundaram;P. Vuong;Jiho Shin;Jinyeong Choe;Zhihao Xu;Rehan Younas;Justin S. Kim;Sangmoon Han;Sangho Lee;Sun Ok Kim;Beomseok Kang;Seungju Seo;Hyojung Ahn;Seunghwan Seo;Kate Reidy;Eugene Park;Sungchul Mun;Min-Chul Park;Suyoun Lee;Hyung-Jun Kim;Hyun S. Kum;Peng Lin;Christopher Hinkle;Abdallah Ougazzaden;Jong-Hyun Ahn;Jeehwan Kim;S. Bae
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Hinkle其他文献
Materials for interconnects
互连材料
- DOI:
10.1557/s43577-021-00192-3 - 发表时间:
2021-10-28 - 期刊:
- 影响因子:4.900
- 作者:
Daniel Gall;Judy J. Cha;Zhihong Chen;Hyeuk-Jin Han;Christopher Hinkle;Joshua A. Robinson;Ravishankar Sundararaman;Riccardo Torsi - 通讯作者:
Riccardo Torsi
Christopher Hinkle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Hinkle', 18)}}的其他基金
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
- 批准号:
2328908 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT)
合作研究:DMREF:电子相变的加速设计、发现和部署 (ADEPT)
- 批准号:
2324172 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
QuIC-TAQS: Deterministically Placed Nuclear Spin Quantum Memories for Entanglement Distribution
QuIC-TAQS:用于纠缠分布的确定性放置的核自旋量子存储器
- 批准号:
2137828 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: Defect Immune, Topologically Protected Devices for Ultra-Low Power Electronics
合作研究:用于超低功率电子器件的缺陷免疫、拓扑保护器件
- 批准号:
1802166 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Defect Immune, Topologically Protected Devices for Ultra-Low Power Electronics
合作研究:用于超低功率电子器件的缺陷免疫、拓扑保护器件
- 批准号:
1917025 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
MRI Acquisition: High-Resolution and Ultra-High Speed X-Ray Diffractometer for Structure, Crystal Quality, and Preferred Orientation Determination
MRI 采集:用于结构、晶体质量和择优取向测定的高分辨率和超高速 X 射线衍射仪
- 批准号:
1531811 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
MRI Acquisition: Compound Semiconductor Reactive Ion Etcher for Functionally Diverse Materials, Structures and Devices
MRI 采集:用于功能多样的材料、结构和器件的化合物半导体反应离子蚀刻机
- 批准号:
1039988 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323936 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant