Bioengineering Single Crystal Growth
生物工程单晶生长
基本信息
- 批准号:1508399
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical: This award by the Biomaterials program in the Division of Materials Research to Northwestern University is to study the deposition of single crystalline elements, spicules, made from calcite, a form of calcium carbonate. Many different organisms, from bacteria to humans, use sophisticated organic/inorganic composite materials for mechanical support (e.g., bone), feeding (tooth enamel), defense, and sensing of light, gravity, and the magnetic field. Work in the researcher's laboratory revolves around developing a biotechnological alternative to material synthesis, i.e. modifying an existing biological system rather than re-creating it in the laboratory. Earlier studies by this researcher have demonstrated that the shape and crystallographic growth direction of spicules deposited by primary mesenchyme cells (PMCs) could be controlled using a recombinant protein, vascular endothelial growth factor (VEGF). Building on these results, the team aims to increase the understanding of, and mastery over, the crystal growth process in PMC culture. For this purpose, the effect of VEGF concentration on the structure and composition of the spicule at length scales from nanometers to hundreds of microns will be determined, using sophisticated characterization techniques such as atom probe tomography, tip-enhanced Raman spectroscopy, and X-ray microscopy. Special attention will be given to the distribution of proteins in the biomineral and the surrounding vesicle, using a combination of proteomics and specific antibody-based imaging. Possible functional roles of proteins on nucleation and growth will be established in in vitro assays. In this manner, the team hopes to learn how biological regulation and processing of a complex composite material are connected, essentially linking the biological and the materials genome. This knowledge could impact a wide range of areas from programmed synthesis of bone grafts to large-scale carbon dioxide sequestration. Research findings will be disseminated not only to technical audiences through publications and at conferences, but also through integration in undergraduate laboratory exercises and by engaging undergraduate students in the research as paid laboratory assistants. Finally, members of the team will reach out to local schools and perform experiments with high and middle school students using a mobile laboratory.Technical: Mineralized tissues are sophisticated hybrid materials with highly hierarchical architecture and remarkable control over crystal growth at multiple length scales. Despite great recent progress in bio-inspired material synthesis, many of the hallmarks of biological crystal growth have yet to be reproduced in vitro: polymorph control, curving and/or branching single crystals, and nm scale control of organic-inorganic composites. Clearly, much could be gained by developing a biotechnological alternative to materials synthesis. This researcher's team earlier has developed an in vitro culture system of sea urchin embryo primary mesenchyme cells (PMCs) to control the deposition of single crystalline spicules made from calcite (CaCO3). A fundamental discovery of the prior funding period was that vascular endothelial growth factor (VEGF) signaling controls the shape and crystallographic growth direction of spicules deposited by PMC; the protein does so without directly interacting with the mineral. This provides the unique opportunity to investigate the mechanism underlying this remarkable example of biological control over crystal growth in a well-characterized in vitro cell culture system. The team will do so at three different length scales. At the sub-micron scale, the team will investigate, using a combination of atom probe tomography, tip-enhanced Raman spectroscopy, and X-ray microscopy, the role of organic-mineral interfaces in crystal growth and the impact of the VEGF concentration on the micro/nanostructure and composition of spicules. At the submicron to subcellular length scales, the team will use a combination of quantitative proteomics and imaging using specific antibodies to elucidate the distribution of spicule matrix proteins. Possible functional roles of proteins on nucleation and growth will be established in in vitro assays. Finally, at the system scale, the impact of temporal patterns of VEGF signaling on the crystal branching will be determined. The proposed research will impact the understanding how skeletal elements arise from biological processes at different length scales and how biological processing affects crystal growth. This is a first step to connect developmental biology to the materials genome. This knowledge could impact a wide range of areas from programmed synthesis of bone grafts to large-scale carbon dioxide sequestration. An important component of the proposed activity is an education and outreach-plan that complements the research objectives and is well integrated; its elements are dissemination of research results and methods in the undergraduate curriculum, engagement of students in the research activities, and outreach to local middle and high schools using a mobile laboratory.
非技术性:西北大学材料研究部生物材料项目的这一奖项旨在研究由方解石(碳酸钙的一种形式)制成的单晶元素针状体的沉积。 许多不同的生物体,从细菌到人类,使用复杂的有机/无机复合材料用于机械支撑(例如,骨骼)、进食(牙釉质)、防御以及对光、重力和磁场的感知。研究人员实验室的工作围绕着开发材料合成的生物技术替代品,即修改现有的生物系统,而不是在实验室中重新创建它。该研究人员的早期研究已经证明,可以使用重组蛋白血管内皮生长因子(VEGF)控制由原代间充质细胞(PMC)沉积的针状体的形状和晶体生长方向。在这些结果的基础上,该团队的目标是增加对PMC培养中晶体生长过程的理解和掌握。为此目的,VEGF浓度对针状物的结构和组成的影响,从纳米到数百微米的长度尺度将被确定,使用复杂的表征技术,如原子探针断层扫描,尖端增强拉曼光谱,和X射线显微镜。将特别注意蛋白质在生物矿物和周围囊泡的分布,使用蛋白质组学和特异性抗体为基础的成像相结合。将在体外试验中确定蛋白质对成核和生长的可能功能作用。通过这种方式,该团队希望了解复杂复合材料的生物调节和加工是如何联系在一起的,基本上是将生物和材料基因组联系在一起。这些知识可能会影响从骨移植的程序合成到大规模二氧化碳封存的广泛领域。研究结果不仅将通过出版物和会议传播给技术受众,而且还将通过与本科生实验室练习相结合,并让本科生作为付费实验室助理参与研究。最后,团队成员将深入当地学校,使用移动的实验室与高中生一起进行实验。技术:矿化组织是复杂的混合材料,具有高度的层次结构,并在多个长度尺度上对晶体生长进行显着控制。尽管最近在生物启发的材料合成方面取得了很大进展,但生物晶体生长的许多标志尚未在体外重现:多晶型控制,弯曲和/或分支单晶,以及有机-无机复合材料的纳米尺度控制。显然,通过开发一种替代材料合成的生物技术,可以获得很多好处。该研究小组早些时候开发了一种海胆胚胎初级间充质细胞(PMC)的体外培养系统,以控制由方解石(CaCO 3)制成的单晶针状体的沉积。前期研究的一个基本发现是,血管内皮生长因子(VEGF)信号可以控制PMC沉积的针状体的形状和晶体生长方向,而这种蛋白质并不直接与矿物质相互作用。这为研究这种在体外细胞培养系统中生物控制晶体生长的机制提供了独特的机会。该小组将在三个不同的长度尺度上这样做。在亚微米尺度上,该团队将使用原子探针断层扫描,尖端增强拉曼光谱和X射线显微镜的组合来研究有机-矿物界面在晶体生长中的作用以及VEGF浓度对微/纳米结构和针状物组成的影响。在亚微米到亚细胞的长度尺度上,研究小组将使用定量蛋白质组学和使用特异性抗体的成像相结合来阐明骨针基质蛋白的分布。将在体外试验中确定蛋白质对成核和生长的可能功能作用。最后,在系统规模上,将确定VEGF信号传导的时间模式对晶体分支的影响。拟议的研究将影响对骨骼元素如何从不同长度尺度的生物过程中产生以及生物过程如何影响晶体生长的理解。这是将发育生物学与材料基因组联系起来的第一步。这些知识可能会影响从骨移植的程序合成到大规模二氧化碳封存的广泛领域。拟议活动的一个重要组成部分是一项教育和推广计划,该计划补充了研究目标,并得到了很好的整合;其内容是在本科课程中传播研究成果和方法,让学生参与研究活动,并利用移动的实验室向当地初中和高中推广。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Derk Joester其他文献
Visualizing Structure and Elemental Content in Complex Materials and Biological Samples by Hard X-ray Microscopy
通过硬 X 射线显微镜可视化复杂材料和生物样品中的结构和元素含量
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:2.8
- 作者:
S. Vogt;S. Gleber;D. Vine;L. Trahey;L. Finney;J. Ward;J. Maser;Barry P. Lai;Chris Jacobsen;Lee Makowski;M. D. D. Jonge;M. Krejci;Derk Joester - 通讯作者:
Derk Joester
Characterization of mineralized tissues by atom probe tomography
- DOI:
10.1557/s43578-024-01472-9 - 发表时间:
2024-12-20 - 期刊:
- 影响因子:2.900
- 作者:
Xingchen Zhao;Derk Joester - 通讯作者:
Derk Joester
Derk Joester的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Derk Joester', 18)}}的其他基金
GRC/GRS on Biomineralization: Fundamental Biotic and Abiotic Mechanisms
GRC/GRS 关于生物矿化:基本生物和非生物机制
- 批准号:
1827447 - 财政年份:2018
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
WORKSHOP: 2016 GRS/GRC on Biomineralization
研讨会:2016 年 GRS/GRC 生物矿化
- 批准号:
1638860 - 财政年份:2016
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
The response of primary mesenchyme cells to VEGF
原代间充质细胞对VEGF的反应
- 批准号:
1456837 - 财政年份:2015
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
EAGER: Towards Atomic-Scale Imaging of Hybrid Nanomaterials
EAGER:迈向混合纳米材料的原子级成像
- 批准号:
1341391 - 财政年份:2013
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
MRI: Development of a Cryogenic Sample-Preparation Instrument (NU CRYOCLUSTER)
MRI:低温样品制备仪器 (NU CRYOCLUSTER) 的开发
- 批准号:
1229693 - 财政年份:2012
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
相似国自然基金
基于Single Cell RNA-seq的斑马鱼神经干细胞不对称分裂调控机制研究
- 批准号:31601181
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
甲醇合成汽油工艺中烯烃催化聚合过程的单元步骤(single event)微动力学理论研究
- 批准号:21306143
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of highly efficient and stable photon-counting type X-ray detectors using single crystal metal halide perovskite semiconductors
利用单晶金属卤化物钙钛矿半导体开发高效稳定的光子计数型X射线探测器
- 批准号:
24K15592 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Single crystal diffractometer
单晶衍射仪
- 批准号:
536384865 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Major Research Instrumentation
single crystal diffractometer
单晶衍射仪
- 批准号:
524434271 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Major Research Instrumentation
Single crystal diffractometer
单晶衍射仪
- 批准号:
527802652 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Major Research Instrumentation
Analysis of CO2 reduction reaction by ionic liquids and single crystal electrodes
离子液体和单晶电极CO2还原反应分析
- 批准号:
23K13835 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Develop single-crystal materials for healthcare and green energy applications
开发用于医疗保健和绿色能源应用的单晶材料
- 批准号:
2859486 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Studentship
Porous Piezoelectric Single Crystal Sensors (POPSICALS)
多孔压电单晶传感器 (POPSICALS)
- 批准号:
EP/X018679/1 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Research Grant
MRI: Track 1 Acquisition of a Single-Crystal X-ray Diffractometer to Support Primarily Undergraduate Research in the Greater Susquehanna Valley
MRI:轨道 1 采购单晶 X 射线衍射仪,主要支持大萨斯奎哈纳山谷的本科生研究
- 批准号:
2320461 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of a Single Crystal X-Ray Diffractometer for Structure Determination of Molecules and Materials at Primarily Undergraduate Institutions
设备: MRI:轨道 1 采购单晶 X 射线衍射仪,用于主要本科机构的分子和材料结构测定
- 批准号:
2320694 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Single Crystal X-Ray Diffractometer
单晶X射线衍射仪
- 批准号:
507807574 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Major Research Instrumentation














{{item.name}}会员




