FRG: Collaborative Research: Vectorial and geometric problems in the calculus of variations

FRG:协作研究:变分法中的矢量和几何问题

基本信息

  • 批准号:
    1361131
  • 负责人:
  • 金额:
    $ 20.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

This project focuses on mathematical methods for problems that appear naturally in physics and engineering, for example, non-linear elasticity, phase transitions and interaction energies. Apart from being fascinating mathematical problems that require new ideas and methods, their study is also of great importance for a deeper understanding of the physical phenomena themselves. For instance, understanding the best way to crumple a paper is a natural problem in elasticity which has several applications in material sciences, while nonlocal interaction energies appear in physics and chemistry as a way to describe the energy of nuclei. Our mathematical research will shed new light on the range of energies under which nuclei are stable. The project will also have important impact on human resource development. We propose a system of personnel exchanges between our home institutions, designed to provide a rich training experience to students and postdocs. We propose to coordinate our activities and to have an emphasis month every year in one of the home universities of the PIs. We also propose summer schools designed to bring members of the group together (including graduate students and postdocs) to stimulate scientific progress, while exposing the fruits of our research to a broader audience and helping to educate and attract a new generation of researchers to this exciting area of emerging mathematical challenges and ideas.The goals of this project include developing new general methods to study variational problems both in a vectorial setting and in the case of non-local interaction energies. The problems we plan to study include: variational problems in nonlinear elasticity related to crumpling; existence of gradient flows for quasiconvex energy functionals and variational problems involving surface tension and nonlocal energies. We focus on central issues in the calculus of variations, such as proving existence of minimizers of energy functionals and understanding their (possible) uniqueness and regularity. While much is known in the scalar case, very few results are available in the vectorial setting (both in the static and evolutionary cases) and for geometric problems involving non-local energies. Through a common effort, bringing together the investigators and collaborators for this Focused Research Group Grant, we expect some general methods to emerge, allowing us to obtain new substantial results. In addition to its purely mathematical interest, this project will improve the understanding of the phenomena that these models attempt to reflect.
这个项目专注于解决物理和工程中自然出现的问题的数学方法,例如,非线性弹性、相变和相互作用能量。除了是需要新思想和新方法的引人入胜的数学问题外,它们的研究对于加深对物理现象本身的理解也是非常重要的。例如,理解弄皱纸张的最佳方法是弹性力学中的一个自然问题,它在材料科学中有几个应用,而非局域相互作用能出现在物理和化学中,作为描述原子核能量的一种方式。我们的数学研究将为原子核稳定的能量范围提供新的线索。该项目还将对人力资源开发产生重要影响。我们提出了两国院校之间的人员交流制度,旨在为学生和博士后提供丰富的培训经验。我们建议协调我们的活动,并每年在私人投资机构的其中一所本土大学举行重点活动。我们还建议举办暑期班,旨在将小组成员(包括研究生和博士后)聚集在一起,以刺激科学进步,同时向更广泛的受众展示我们的研究成果,并帮助教育和吸引新一代研究人员进入这个令人兴奋的新兴数学挑战和思想领域。该项目的目标包括开发新的通用方法,在矢量环境和非局部相互作用能量的情况下研究变分问题。我们计划研究的问题包括:与褶皱有关的非线性弹性力学中的变分问题;拟凸能量泛函的梯度流的存在性;以及涉及表面张力和非局部能量的变分问题。我们集中于变分中的中心问题,例如证明能量泛函极小值的存在性,以及理解它们(可能的)唯一性和正则性。虽然在标量情况下已知很多,但在矢量设置(静态和演化情况下)和涉及非局部能量的几何问题中可用的结果很少。通过共同努力,将研究人员和合作者聚集在一起,为这项重点研究小组拨款,我们预计将出现一些通用方法,使我们能够获得新的实质性结果。除了纯粹的数学兴趣外,这个项目还将提高对这些模型试图反映的现象的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ovidiu Savin其他文献

Boundary Hölder Gradient Estimates for the Monge–Ampère Equation
  • DOI:
    10.1007/s12220-020-00354-w
  • 发表时间:
    2020-02-08
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Ovidiu Savin;Qian Zhang
  • 通讯作者:
    Qian Zhang

Ovidiu Savin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ovidiu Savin', 18)}}的其他基金

Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Standard Grant
Interacting Free Boundaries in the Calculus of Variations
变分法中相互作用的自由边界
  • 批准号:
    2055617
  • 财政年份:
    2021
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Standard Grant
Qualitative Properties of Solutions to Nonlinear Elliptic Partial Differential Equations
非线性椭圆偏微分方程解的定性性质
  • 批准号:
    1800645
  • 财政年份:
    2018
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Standard Grant
Regularity Problems in the Calculus of Variations and Elliptic Partial Differential Equations
变分和椭圆偏微分方程中的正则问题
  • 批准号:
    1500438
  • 财政年份:
    2015
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Continuing Grant
Degenerate Elliptic Problems in Analysis and Geometry
分析和几何中的简并椭圆问题
  • 批准号:
    1200701
  • 财政年份:
    2012
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Standard Grant
Regularity of solutions to nonlinear elliptic PDEs
非线性椭圆偏微分方程解的正则性
  • 批准号:
    0701037
  • 财政年份:
    2007
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Continuing Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了