Regularity of solutions to nonlinear elliptic PDEs
非线性椭圆偏微分方程解的正则性
基本信息
- 批准号:0701037
- 负责人:
- 金额:$ 24.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Regularity of Solutions to Nonlinear Elliptic PDEs.Abstract of Proposed Research Ovidiu SavinThe focus of this project will be on proving properties of certain solutions of nonlinear elliptic partial differential equations. The equations include various semi-linear and fully nonlinear equations; especially variants of the Monge-Ampere equation and the infinity Laplacian. Many of the problems have a variational description. The solutions may be entire functions, solutions of obstacle problems or free boundary problems. The issues include questions about the regularity and symmetries of solutions, their level sets and possible singularities. The problems to be studied in this project arise from simple models of concrete phenomena in elasticity, geometry and statistical mechanics and related areas. The motivation for one of the problems comes from the theory of optimal transportation. Another problem involves the regularity of free boundaries originating as limits of certain random surfaces and arises in statistical mechanics. For all of these problems there are many open mathematical questions that will be investigated. Particular concentration will be put on developing regularity theories for the solutions of these problems.
非线性椭圆偏微分方程解的正则性。建议研究摘要Ovidiu Savin本项目的重点将是证明非线性椭圆偏微分方程某些解的性质。这些方程包括各种半线性和完全非线性方程;特别是蒙赫-安培方程和无穷拉普拉斯算子的变体。许多问题都有变分描述。这些解可以是整函数、障碍问题的解或自由边界问题的解。这些问题包括关于解的正则性和对称性、它们的水平集和可能的奇点的问题。在这个项目中要研究的问题来自弹性,几何和统计力学及相关领域的具体现象的简单模型。其中一个问题的动机来自于最优运输理论。另一个问题涉及的规则性的自由边界起源于某些随机表面的限制,并出现在统计力学。对于所有这些问题,有许多开放的数学问题,将被调查。特别是集中将放在发展规律性理论,这些问题的解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ovidiu Savin其他文献
Boundary Hölder Gradient Estimates for the Monge–Ampère Equation
- DOI:
10.1007/s12220-020-00354-w - 发表时间:
2020-02-08 - 期刊:
- 影响因子:1.500
- 作者:
Ovidiu Savin;Qian Zhang - 通讯作者:
Qian Zhang
Ovidiu Savin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ovidiu Savin', 18)}}的其他基金
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 24.53万 - 项目类别:
Standard Grant
Interacting Free Boundaries in the Calculus of Variations
变分法中相互作用的自由边界
- 批准号:
2055617 - 财政年份:2021
- 资助金额:
$ 24.53万 - 项目类别:
Standard Grant
Qualitative Properties of Solutions to Nonlinear Elliptic Partial Differential Equations
非线性椭圆偏微分方程解的定性性质
- 批准号:
1800645 - 财政年份:2018
- 资助金额:
$ 24.53万 - 项目类别:
Standard Grant
Regularity Problems in the Calculus of Variations and Elliptic Partial Differential Equations
变分和椭圆偏微分方程中的正则问题
- 批准号:
1500438 - 财政年份:2015
- 资助金额:
$ 24.53万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Vectorial and geometric problems in the calculus of variations
FRG:协作研究:变分法中的矢量和几何问题
- 批准号:
1361131 - 财政年份:2014
- 资助金额:
$ 24.53万 - 项目类别:
Continuing Grant
Degenerate Elliptic Problems in Analysis and Geometry
分析和几何中的简并椭圆问题
- 批准号:
1200701 - 财政年份:2012
- 资助金额:
$ 24.53万 - 项目类别:
Standard Grant
相似国自然基金
无穷维哈密顿系统的KAM理论
- 批准号:10771098
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
- 批准号:
EP/V008854/1 - 财政年份:2021
- 资助金额:
$ 24.53万 - 项目类别:
Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
- 批准号:
EP/V008897/1 - 财政年份:2021
- 资助金额:
$ 24.53万 - 项目类别:
Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
- 批准号:
EP/V008889/1 - 财政年份:2021
- 资助金额:
$ 24.53万 - 项目类别:
Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
- 批准号:
EP/V008919/1 - 财政年份:2021
- 资助金额:
$ 24.53万 - 项目类别:
Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
- 批准号:
EP/V009060/1 - 财政年份:2021
- 资助金额:
$ 24.53万 - 项目类别:
Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
- 批准号:
EP/V009389/1 - 财政年份:2021
- 资助金额:
$ 24.53万 - 项目类别:
Research Grant
Regularity theory for viscosity solutions of fully nonlinear equations and its applications
全非线性方程粘度解的正则理论及其应用
- 批准号:
20H01817 - 财政年份:2020
- 资助金额:
$ 24.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nonlinear Geometric Flows: Ancient Solutions, Non-Compact Surfaces, and Regularity
非线性几何流:古老的解、非紧曲面和正则性
- 批准号:
1900702 - 财政年份:2019
- 资助金额:
$ 24.53万 - 项目类别:
Continuing Grant
Challenges to unexplored fields of research on the Cauchy problem for systems of quasi-linear wave equations--large-time behavior and regularity of solutions--
拟线性波动方程组柯西问题的未探索领域研究面临的挑战——解的大时间行为和规律性——
- 批准号:
18K03365 - 财政年份:2018
- 资助金额:
$ 24.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularity for solutions to quasilinear degenerate parabolic-hyperbolic stochastic partial differential equations (SPDEs) driven by nonlinear multipli
由非线性乘法驱动的拟线性简并抛物双曲随机偏微分方程 (SPDE) 解的正则性
- 批准号:
1939627 - 财政年份:2017
- 资助金额:
$ 24.53万 - 项目类别:
Studentship