Degenerate Elliptic Problems in Analysis and Geometry
分析和几何中的简并椭圆问题
基本信息
- 批准号:1200701
- 负责人:
- 金额:$ 19.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on qualitative properties of solutions to certain degenerate elliptic partial differential equations arising in different areas of mathematics. Some of the problems under investigation include fourth-order Monge-Ampere-type equations, nonlocal free boundary and phase transition problems, and degenerate fully nonlinear equations of concave type. One recurrent question is the smoothness of the solutions or their level sets and their behavior near singular points. For example, the project will investigate the smoothness of Lipschitz thin free boundaries and the dimensions of their singular sets, the boundary behavior of solutions of Monge-Ampere equations with degenerate boundary conditions, and the rigidity of level sets in nonlocal phase transitions.Partial differential equations are used to describe a large variety of physical phenomena. At the same time, they contribute to the development of different branches of mathematics such as differential geometry, topology, probability, and algebraic geometry. In particular, Monge-Ampere equations occur naturally in the mathematical formulation of optimal transportation problems, many of them within the realm of our daily lives: traffic network planning in cities, internet traffic optimization, blood vessel branching in the human venous system, and meteorological fluid dynamics. Such equations also frequently turn up in other areas of mathematics, like Riemannian or conformal geometry. Nonlocal free boundary and phase transition problems appear in several areas of science, including fluid mechanics, plasma physics, and semiconductor theory. Thin free boundaries are relevant to our understanding of flame propagation and also in the propagation of surfaces of discontinuities. The final purpose of this project is to gain the correct perspective on interesting "degenerate" equations in order to be able to introduce innovative tools and methodologies to tackle them.
本课题主要研究在不同数学领域中出现的某些退化椭圆型偏微分方程解的性质。所研究的问题包括四阶Monge-Ampere型方程,非局部自由边界和相变问题,以及凹型退化的完全非线性方程。一个反复出现的问题是解或其水平集的光滑性及其在奇点附近的行为。例如,该项目将研究Lipschitz薄自由边界的光滑性及其奇异集的维度,具有退化边界条件的Monge-Ampere方程解的边界行为,以及非局部相变中水平集的刚性。同时,它们促进了不同数学分支的发展,如微分几何、拓扑学、概率和代数几何。特别是,Monge-Ampere方程自然而然地出现在最优交通问题的数学公式中,其中许多问题涉及我们的日常生活:城市交通网络规划、互联网交通优化、人体静脉系统的血管分支和气象流体动力学。这样的方程也经常出现在数学的其他领域,比如黎曼几何或保形几何。非局部自由边界和相变问题出现在多个科学领域,包括流体力学、等离子体物理和半导体理论。薄的自由边界与我们对火焰传播的理解有关,也与不连续表面的传播有关。这个项目的最终目的是获得对有趣的“退化”方程的正确看法,以便能够引入创新的工具和方法来解决它们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ovidiu Savin其他文献
Boundary Hölder Gradient Estimates for the Monge–Ampère Equation
- DOI:
10.1007/s12220-020-00354-w - 发表时间:
2020-02-08 - 期刊:
- 影响因子:1.500
- 作者:
Ovidiu Savin;Qian Zhang - 通讯作者:
Qian Zhang
Ovidiu Savin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ovidiu Savin', 18)}}的其他基金
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 19.89万 - 项目类别:
Standard Grant
Interacting Free Boundaries in the Calculus of Variations
变分法中相互作用的自由边界
- 批准号:
2055617 - 财政年份:2021
- 资助金额:
$ 19.89万 - 项目类别:
Standard Grant
Qualitative Properties of Solutions to Nonlinear Elliptic Partial Differential Equations
非线性椭圆偏微分方程解的定性性质
- 批准号:
1800645 - 财政年份:2018
- 资助金额:
$ 19.89万 - 项目类别:
Standard Grant
Regularity Problems in the Calculus of Variations and Elliptic Partial Differential Equations
变分和椭圆偏微分方程中的正则问题
- 批准号:
1500438 - 财政年份:2015
- 资助金额:
$ 19.89万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Vectorial and geometric problems in the calculus of variations
FRG:协作研究:变分法中的矢量和几何问题
- 批准号:
1361131 - 财政年份:2014
- 资助金额:
$ 19.89万 - 项目类别:
Continuing Grant
Regularity of solutions to nonlinear elliptic PDEs
非线性椭圆偏微分方程解的正则性
- 批准号:
0701037 - 财政年份:2007
- 资助金额:
$ 19.89万 - 项目类别:
Continuing Grant
相似海外基金
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 19.89万 - 项目类别:
Standard Grant
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
- 批准号:
2349846 - 财政年份:2024
- 资助金额:
$ 19.89万 - 项目类别:
Standard Grant
Regularity Problems in Elliptic Equations
椭圆方程中的正则性问题
- 批准号:
2243869 - 财政年份:2022
- 资助金额:
$ 19.89万 - 项目类别:
Standard Grant
Finite Element Methods for Elliptic Least-Squares Problems with Inequality Constraints
具有不等式约束的椭圆最小二乘问题的有限元方法
- 批准号:
2208404 - 财政年份:2022
- 资助金额:
$ 19.89万 - 项目类别:
Standard Grant
Moduli of Elliptic Curves and Classical Diophantine Problems
椭圆曲线模和经典丢番图问题
- 批准号:
EP/S031537/1 - 财政年份:2020
- 资助金额:
$ 19.89万 - 项目类别:
Research Grant
Applications of elliptic curves to geometric problems
椭圆曲线在几何问题中的应用
- 批准号:
549407-2020 - 财政年份:2020
- 资助金额:
$ 19.89万 - 项目类别:
University Undergraduate Student Research Awards
Regularity Problems in Elliptic Equations
椭圆方程中的正则性问题
- 批准号:
1954363 - 财政年份:2020
- 资助金额:
$ 19.89万 - 项目类别:
Standard Grant
Research on the global structure of solutions and their stability for nonlocal boundary value problems by using elliptic functions
利用椭圆函数研究非局部边值问题解的全局结构及其稳定性
- 批准号:
19K03593 - 财政年份:2019
- 资助金额:
$ 19.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel Finite Element Methods for Elliptic Distributed Optimal Control Problems
椭圆分布最优控制问题的新颖有限元方法
- 批准号:
1913035 - 财政年份:2019
- 资助金额:
$ 19.89万 - 项目类别:
Standard Grant
Solvability and solutions' analysis of nonlinear elliptic equations from the viewpoint of eigenvalue problems
从特征值问题的角度看非线性椭圆方程的可解性及解分析
- 批准号:
19K03591 - 财政年份:2019
- 资助金额:
$ 19.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




