Qualitative Properties of Solutions to Nonlinear Elliptic Partial Differential Equations
非线性椭圆偏微分方程解的定性性质
基本信息
- 批准号:1800645
- 负责人:
- 金额:$ 25.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on central problems in classical fields of analysis such as the calculus of variations and free boundary problems. The problems under investigation share some common features and have roots in different areas like material sciences, fluid mechanics, geometry, cost optimization etc. They are relevant to both pure and applied mathematics. The proposed problems require progress on the known methods and techniques and addressing them would be beneficial for mathematicians and possibly for the larger scientific community as well. The outcome will be disseminated to the interested audience to invigorate the advancement of the theory. A central part of the project deals with the stability of singular minimizing maps of smooth, convex energies that appear in nonlinear elasticity. The PI will investigate the singularity formation in the associated parabolic flow and the regularity of solutions to a class of elliptic systems with special structure. Another part of the project is concerned with problems in nonlinear elliptic equations. The PI shall study the boundary behavior of some degenerate Monge-Ampere equations and optimal transportation problems, and to develop Pogorelov type estimates for some interesting model equation. In free boundaries, the PI will study the two-phase free boundary problem for different operators together with various obstacle-type problems, and will also analyze the rigidity of boundary layer phase transitions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目关注经典分析领域的核心问题,如变分法和自由边界问题。所研究的问题具有一些共同的特点,并且植根于材料科学、流体力学、几何、成本优化等不同领域。它们与纯数学和应用数学都有关系。提出的问题需要在已知的方法和技术上取得进展,解决这些问题将有利于数学家,也可能有利于更大的科学界。结果将传播给感兴趣的观众,以激发理论的进步。该项目的核心部分是处理非线性弹性中出现的光滑凸能量的奇异最小映射的稳定性。PI将研究相关抛物流中的奇点形成和一类特殊结构椭圆系统解的正则性。项目的另一部分涉及非线性椭圆方程的问题。PI将研究一些退化的蒙日-安培方程和最优运输问题的边界行为,并对一些有趣的模型方程进行Pogorelov型估计。在自由边界中,PI将研究不同算符的两相自由边界问题以及各种障碍型问题,并分析边界层相变的刚性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Perturbative estimates for the one-phase Stefan problem
单相 Stefan 问题的微扰估计
- DOI:10.1007/s00526-021-02003-8
- 发表时间:2021
- 期刊:
- 影响因子:2.1
- 作者:De Silva, D.;Forcillo, N.;Savin, O.
- 通讯作者:Savin, O.
On Certain Degenerate One-phase Free Boundary Problems
关于某些简并单相自由边界问题
- DOI:10.1137/19m1308128
- 发表时间:2021
- 期刊:
- 影响因子:2
- 作者:De Silva, Daniela;Savin, Ovidiu
- 通讯作者:Savin, Ovidiu
On the boundary Harnack principle in Hölder domains
关于 Hölder 域中的边界 Harnack 原理
- DOI:10.3934/mine.2022004
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:De Silva, Daniela;Savin, Ovidiu
- 通讯作者:Savin, Ovidiu
On the fine regularity of the singular set in the nonlinear obstacle problem
非线性障碍问题中奇异集的精细正则性
- DOI:10.1016/j.na.2021.112770
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Savin, Ovidiu;Yu, Hui
- 通讯作者:Yu, Hui
On the Regularity of Optimal Transports Between Degenerate Densities
- DOI:10.1007/s00205-022-01796-y
- 发表时间:2021-05
- 期刊:
- 影响因子:2.5
- 作者:Yash Jhaveri;O. Savin
- 通讯作者:Yash Jhaveri;O. Savin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ovidiu Savin其他文献
Boundary Hölder Gradient Estimates for the Monge–Ampère Equation
- DOI:
10.1007/s12220-020-00354-w - 发表时间:
2020-02-08 - 期刊:
- 影响因子:1.500
- 作者:
Ovidiu Savin;Qian Zhang - 通讯作者:
Qian Zhang
Ovidiu Savin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ovidiu Savin', 18)}}的其他基金
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 25.17万 - 项目类别:
Standard Grant
Interacting Free Boundaries in the Calculus of Variations
变分法中相互作用的自由边界
- 批准号:
2055617 - 财政年份:2021
- 资助金额:
$ 25.17万 - 项目类别:
Standard Grant
Regularity Problems in the Calculus of Variations and Elliptic Partial Differential Equations
变分和椭圆偏微分方程中的正则问题
- 批准号:
1500438 - 财政年份:2015
- 资助金额:
$ 25.17万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Vectorial and geometric problems in the calculus of variations
FRG:协作研究:变分法中的矢量和几何问题
- 批准号:
1361131 - 财政年份:2014
- 资助金额:
$ 25.17万 - 项目类别:
Continuing Grant
Degenerate Elliptic Problems in Analysis and Geometry
分析和几何中的简并椭圆问题
- 批准号:
1200701 - 财政年份:2012
- 资助金额:
$ 25.17万 - 项目类别:
Standard Grant
Regularity of solutions to nonlinear elliptic PDEs
非线性椭圆偏微分方程解的正则性
- 批准号:
0701037 - 财政年份:2007
- 资助金额:
$ 25.17万 - 项目类别:
Continuing Grant
相似海外基金
Analysis on Qualitative Properties and Singularities of Solutions to k-Hessian Equation and k-curvature Equation
k-Hessian方程和k-曲率方程解的定性性质和奇异性分析
- 批准号:
22K03386 - 财政年份:2022
- 资助金额:
$ 25.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Qualitative Properties of Solutions of Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物方程解的定性性质
- 批准号:
1856491 - 财政年份:2019
- 资助金额:
$ 25.17万 - 项目类别:
Standard Grant
Qualitative Properties of Solutions to Fluids Equations
流体方程解的定性性质
- 批准号:
1907992 - 财政年份:2019
- 资助金额:
$ 25.17万 - 项目类别:
Standard Grant
Quantitative and Qualitative properties of solutions of partial differential equations
偏微分方程解的定量和定性性质
- 批准号:
1656845 - 财政年份:2016
- 资助金额:
$ 25.17万 - 项目类别:
Standard Grant
Qualitative properties of solutions to time evolution equations with damping terms
带阻尼项的时间演化方程解的定性性质
- 批准号:
15K17581 - 财政年份:2015
- 资助金额:
$ 25.17万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Quantitative and Qualitative properties of solutions of partial differential equations
偏微分方程解的定量和定性性质
- 批准号:
1500468 - 财政年份:2015
- 资助金额:
$ 25.17万 - 项目类别:
Standard Grant
Studies on blow-up analysis of critical variational problems and qualitative properties of solutions caused by blow-up
临界变分问题的爆炸分析及爆炸引起的解的定性性质研究
- 批准号:
20540216 - 财政年份:2008
- 资助金额:
$ 25.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Qualitative Properties of Solutions of Differential Equations Modeling Biological Pattern Formation
模拟生物模式形成的微分方程解的定性性质
- 批准号:
18204010 - 财政年份:2006
- 资助金额:
$ 25.17万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Qualitative Properties of Solutions to Second Order Elliptic and Parabolic Differential Equations
二阶椭圆和抛物型微分方程解的定性性质
- 批准号:
9971052 - 财政年份:1999
- 资助金额:
$ 25.17万 - 项目类别:
Continuing Grant
Existence and qualitative properties of solutions to certain differential equations
某些微分方程解的存在性和定性性质
- 批准号:
184173-1996 - 财政年份:1999
- 资助金额:
$ 25.17万 - 项目类别:
Discovery Grants Program - Individual