Stability Phenomena in Number Theory, Algebraic Geometry, and Topology

数论、代数几何和拓扑中的稳定性现象

基本信息

  • 批准号:
    1402620
  • 负责人:
  • 金额:
    $ 27.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

Number theory is one of the oldest and purest areas of mathematics, unchanged in many ways since the time of Euclid, but in recent years it has incorporated ideas and techniques from a wide range of other mathematical areas. This research project stands at the interface between classical questions about whole numbers and ideas from other subjects. In one main project, the PI and his collaborators show how results in algebraic topology, the study of high-dimensional shapes and the relations between them, translate into statements about the arithmetic of various number systems. In another, he and another group develop a new form of representation theory (the study of symmetries of linear spaces), which sheds light on phenomena of stabilization in number theory, topology, and algebra. To a first approximation, the work answers the question: when can an infinite object be described by a finite amount of data? The PI will also continue his work in mathematical outreach, including a general-audience book to be released in 2014. This project investigates the Cohen-Lenstra conjectures concerning the variation of the p-part of the class group of number fields, and, more generally, distributional questions about the discriminants of G-extensions for G an arbitrary finite group. The methods used are novel -- the PI and collaborators show that the Cohen-Lenstra conjectures follow from assertions about the cohomology of certain moduli spaces of branched covers of the complex projective line, known as Hurwitz spaces. These spaces can be defined purely topologically, and in fact the thrust of the work has been to show that new theorems in algebraic topology imply many popular conjectures about arithmetic statistics over function fields. What's more, the topological results serve as a kind of machine for generating conjectures, or at least heuristics, about questions concerning the distribution of G-extensions over Q which have not yet been investigated. For instance, the results suggest that if N is a random squarefree integer chosen uniformly from a large range, and X is the number of totally real quintic extensions with discriminant N, then X has the Poisson distribution with mean 1/120. A new aspect of the project is the theory of FI-modules, developed by the PI in collaboration with Tom Church and Benson Farb. This theory represents a new approach to homological stability, whose natural domain of application is not sequences of unadorned vector spaces but rather sequences of vector spaces whose nth term is a representation of the symmetric group on n letters. It turns out that there is a natural abelian category, called the category of FI-modules, which captures a broad spectrum of phenomena ranging from cohomology of moduli spaces to the coinvariant algebras arising in algebraic combinatorics to the statistics of squarefree polynomials and tori in Lie groups over finite fields. In this research project, besides continuing investigation of the inherent structure of the category of FI-modules, it is planned to bring this work into contact with other work with Venkatesh and Westerland. A typical question to be investigated is: are there infinitely many cubic extensions of a rational function field over a finite field (or, better: what is the expected number of cubic extensions, asymptotically) whose discriminant is prime (i.e. an irreducible polynomial over the finite field)? The corresponding question over Q is a well-known open problem. The project will also address a suite of other problems; geometric analogues of and approaches to the Kakeya problem in harmonic analysis, random matrices and the proportion of ordinary curves over finite fields, and, on the applied side, some questions about the application of geometry to problems in data science.
数论是最古老、最纯粹的数学领域之一,自欧几里得时代以来,它在许多方面都没有改变,但近年来,它已经从广泛的其他数学领域吸收了思想和技术。这个研究项目站在关于整数的经典问题和其他学科的思想之间的接口。在一个主要项目中,PI和他的合作者展示了代数拓扑的结果,高维形状及其之间关系的研究,如何转化为各种数字系统的算术陈述。另一方面,他和另一个小组发展了一种新的表示理论(对线性空间对称性的研究),它揭示了数论、拓扑学和代数中的稳定现象。近似地说,这项工作回答了这个问题:什么时候一个无限的物体可以用有限的数据来描述?PI还将继续他的数学推广工作,包括将于2014年出版的一本面向大众的书。本文研究了关于数域类群的p部变分的Cohen-Lenstra猜想,以及关于任意有限群G-扩展的判词的分布问题。所使用的方法是新颖的——PI和合作者表明,Cohen-Lenstra猜想遵循复射影线分支覆盖的某些模空间(称为Hurwitz空间)的上同调断言。这些空间可以纯拓扑学地定义,事实上,这项工作的主旨是表明代数拓扑学中的新定理隐含了许多关于函数域上算术统计的流行猜想。更重要的是,拓扑结果作为一种机器,用于产生关于尚未研究的Q上g扩展分布问题的猜想,或至少是启发式。例如,结果表明,如果N是在大范围内均匀选择的随机无平方整数,X是具有判别N的全实数五次扩展的个数,则X具有均值为1/120的泊松分布。该项目的一个新方面是fi模块理论,由PI与Tom Church和Benson Farb合作开发。这一理论代表了同调稳定性的一种新方法,它的自然应用领域不是无修饰的向量空间序列,而是第n项是n个字母上对称群的表示的向量空间序列。事实证明,有一个自然的阿贝尔范畴,称为fi -模范畴,它捕获了广泛的现象,从模空间的上同调到代数组合中的协不变代数,再到有限域上李群中无平方多项式和环面的统计。在这个研究项目中,除了继续研究fi模块类别的内在结构外,还计划将这项工作与Venkatesh和Westerland的其他工作联系起来。要研究的一个典型问题是:在有限域上是否存在无穷多个有理函数域的三次扩展(或者,更好的是:三次扩展的期望值是多少,渐近地),其判别式是素数(即有限域上的不可约多项式)?Q对应的问题是一个众所周知的开放问题。该项目还将解决一系列其他问题;调和分析、随机矩阵和有限域上普通曲线的比例中Kakeya问题的几何类似物和方法,以及在应用方面,关于几何在数据科学问题中的应用的一些问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jordan Ellenberg其他文献

Jordan Ellenberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jordan Ellenberg', 18)}}的其他基金

Geometry of Arithmetic Statistics and Related Topics
算术统计几何及相关主题
  • 批准号:
    2301386
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
Rational Points and Asymptotics of Distribution
有理点和分布渐进
  • 批准号:
    2001200
  • 财政年份:
    2020
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
Madison Moduli Weekend - A Conference on Moduli Spaces
麦迪逊 Moduli 周末 - Moduli 空间会议
  • 批准号:
    1955665
  • 财政年份:
    2020
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
Asymptotics for Rational Points
有理点的渐近
  • 批准号:
    1700884
  • 财政年份:
    2017
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
Geometric Analytic Number Theory
几何解析数论
  • 批准号:
    1101267
  • 财政年份:
    2011
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
EMSW21-RTG: Algebraic Geometry and Number Theory at the University of Wisconsin
EMSW21-RTG:威斯康星大学代数几何和数论
  • 批准号:
    0838210
  • 财政年份:
    2009
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
Moduli Spaces and Algebraic Structures in Homotopy Theory
同伦理论中的模空间和代数结构
  • 批准号:
    0705428
  • 财政年份:
    2007
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
CAREER: Rational points on varieties and non-abelian Galois groups
职业:簇上的有理点和非阿贝尔伽罗瓦群
  • 批准号:
    0448750
  • 财政年份:
    2005
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
Rational points, Galois representations, and fundamental groups
有理点、伽罗瓦表示和基本群
  • 批准号:
    0401616
  • 财政年份:
    2004
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant

相似海外基金

Study on the dissipation mechanism and chemical reaction phenomena of high Schmidt number scalars near the turbulent/non-turbulent interfacial layer
湍流/非湍流界面层附近高施密特数标量的耗散机理及化学反应现象研究
  • 批准号:
    22K03937
  • 财政年份:
    2022
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Searches for lepton number and lepton flavour violating phenomena in high energy electroweak interactions with the ATLAS experiment
利用 ATLAS 实验寻找高能电弱相互作用中的轻子数和轻子味道破坏现象
  • 批准号:
    2491327
  • 财政年份:
    2020
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Studentship
Elucidation and modeling for the high Peclet number turbulent diffusion and reactive phenomena near the turbulent/non-turbulent inteface
湍流/非湍流界面附近的高佩克莱特数湍流扩散和反应现象的阐明和建模
  • 批准号:
    18H01369
  • 财政年份:
    2018
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Examination on Turbulence Mixing and Sound Generation Phenomena in High Mach Number Multiphase Flows by DNS Analysis
用 DNS 分析检验高马赫数多相流中的湍流混合和发声现象
  • 批准号:
    17K06167
  • 财政年份:
    2017
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of true orbit computation: analysis of nonlinear phenomena and application to pseudorandom number generation
真实轨道计算的发展:非线性现象分析及其在伪随机数生成中的应用
  • 批准号:
    15K00342
  • 财政年份:
    2015
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of predictions for turbulence phenomena involving separation by high Reynolds-number DNS
开发涉及高雷诺数 DNS 分离的湍流现象的预测
  • 批准号:
    20760125
  • 财政年份:
    2008
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
PHYSICAL PHENOMENA IN CRYSTALS CONSISTING OF A FINITE AND COUNTABLE NUMBER OF ATOMS IN ONE DIRECTION
由沿一个方向的有限可数原子组成的晶体中的物理现象
  • 批准号:
    7465828
  • 财政年份:
    1974
  • 资助金额:
    $ 27.8万
  • 项目类别:
PHYSICAL PHENOMENA IN CRYSTALS CONSISTING OF A FINITE AND COUNTABLE NUMBER OF ATOMS IN ONE DIRECTION
由沿一个方向的有限可数原子组成的晶体中的物理现象
  • 批准号:
    7357302
  • 财政年份:
    1973
  • 资助金额:
    $ 27.8万
  • 项目类别:
PHYSICAL PHENOMENA IN CRYSTALS CONSISTING OF A FINITE AND COUNTABLE NUMBER OF ATOMS IN ONE DIRECTION
由沿一个方向的有限可数原子组成的晶体中的物理现象
  • 批准号:
    7247794
  • 财政年份:
    1972
  • 资助金额:
    $ 27.8万
  • 项目类别:
Physical Phenomena in Crystals Consisting of a Finite and Countable Number of Atoms in One Direction
由单向有限可数原子组成的晶体中的物理现象
  • 批准号:
    7203147
  • 财政年份:
    1972
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了