Asymptotics for Rational Points
有理点的渐近
基本信息
- 批准号:1700884
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research scope of this grant lies on the active interface between number theory and geometry. Geometry is perhaps the oldest part of mathematics, and number theory, the study of equations and their solutions in whole numbers, is hardly younger. Yet it is only in the very recent history of mathematics that researchers have understood just how interrelated these subjects are and how much they have to offer each other. One example is the "cap set problem," related to the popular card game Set. In the game, one asks: how many cards is it possible to have on the table with no legal play? It turns out that this problem has to do with the geometry of points and lines in 4-dimensional space, with equations among numbers and their last base-3 digit, and the relation between these. In 2016 the PI was part of a major breakthrough on this old problem, and his proposed research will continue investigating the new ideas that led to progress as well as other projects mixing number theory and geometry. The proposal covers several areas in number theory, algebraic geometry, topology, combinatorics, and applied math, in collaboration with a wide group of fellow researchers, including graduate students. One of the central questions of arithmetic statistics is: how many number fields are there of discriminant at most X? More particularly: how many of these have Galois group G for a specified subgroup G of a symmetric group S_n? A famous conjecture of Malle proposes a description for the asymptotic behavior of this count as X grows. Many of the major themes in contemporary number theory (e.g. Bhargava's work on counting quartic and quintic extensions, progress on Cohen-Lenstra conjectures) concern cases of this conjecture. In previous work, the PI showed that the Cohen-Lenstra conjecture over the function field F_q(t) could be approached by the methods of algebraic topology, using Grothendieck's theory of etale cohomology as the bridge between the two subjects. Now the PI proposes to prove the upper bound in the Malle conjecture in the case K = F_q(t), again using a combination of topological and arithmetic methods, but now with input from the theory of quantum shuffle algebras. In another project, the PI proposes to investigate the analogy between Malle's conjectures and the Batyrev-Manin conjectures, which study the asymptotics for rational points with bounded height on algebraic varieties. The height is a natural notion of complexity of an algebraic point just as the discriminant is for a number field. Here, the technical bridge is the theory of algebraic stacks; the PI will develop a theory of rational points of bounded height on Deligne-Mumford stacks, which first of all requires defining the height of a point on a stack. In particular, the discriminant of a number field is the height (in the novel sense) of a point on the classifying stack of a finite group. The PI will formulate a generalized Batyrev-Manin conjecture for stacks, which specializes to both Malle's conjecture and the Batyrev-Manin conjecture. The PI will also investigate properties of the new definition: for instance, the PI will aim to prove that the Faltings height is actually height on the moduli stack of abelian varieties in this sense. The PI also proposes problems in additive combinatorics, the homology of FI-modules, and the geometry of machine learning.
这项资助的研究范围在于数论和几何之间的活跃界面。 几何学也许是数学中最古老的部分,而数论,即研究方程及其整数解的学科,也并不年轻。 然而,直到最近的数学史上,研究人员才明白这些学科是多么相互关联,以及它们彼此之间有多大的贡献。 其中一个例子是与流行的纸牌游戏Set有关的“cap set问题”。 在游戏中,一个人问:有多少张牌是可能的,在桌子上没有法律的发挥? 事实证明,这个问题与四维空间中的点和线的几何形状有关,与数字之间的方程以及它们的最后一个基数-3数字以及它们之间的关系有关。 2016年,PI是这个老问题的重大突破的一部分,他提出的研究将继续调查导致进步的新想法以及其他混合数论和几何的项目。该提案涵盖了数论,代数几何,拓扑学,组合学和应用数学的几个领域,与包括研究生在内的广泛的研究人员合作。 算术统计学的中心问题之一是:判别式至多有多少数域?更具体地说:对于对称群S_n的指定子群G,这些群中有多少个具有伽罗瓦群G?一个著名的猜想马勒提出了一个描述的渐近行为,这计数作为X的增长。 当代数论中的许多重要主题(例如Bhargava关于计算四次和五次延拓的工作,Cohen-Lenstra代数的进展)都涉及这个猜想的情况。在以前的工作中,PI证明了函数域F_q(t)上的Cohen-Lenstra猜想可以用代数拓扑的方法来逼近,并利用Grothendieck的上同调理论作为这两个问题之间的桥梁。现在PI提出在K = F_q(t)的情况下证明Malle猜想的上界,再次使用拓扑和算术方法的组合,但现在使用量子洗牌代数理论的输入。 在另一个项目中,PI建议研究Malle的代数和Batyrev-Manin代数之间的类比,后者研究代数簇上有界高度的有理点的渐近性。高度是代数点的复杂性的自然概念,就像判别式是数域一样。 在这里,技术桥梁是代数堆栈理论; PI将开发Deligne-Mumford堆栈上有界高度的有理点理论,首先需要定义堆栈上一个点的高度。特别地,数域的判别式是有限群的分类栈上的点的高度(在新的意义上)。PI将制定一个广义的Batyrev-Manin猜想堆栈,专门用于Malle猜想和Batyrev-Manin猜想。PI还将研究新定义的性质:例如,PI的目标是证明Faltings高度实际上是在这个意义上阿贝尔簇的模栈上的高度。 PI还提出了添加剂组合学,FI-模块的同源性和机器学习的几何学问题。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonvanishing of hyperelliptic zeta functions over finite fields
- DOI:10.2140/ant.2020.14.1895
- 发表时间:2019-01
- 期刊:
- 影响因子:1.3
- 作者:J. Ellenberg;Wanlin Li;M. Shusterman
- 通讯作者:J. Ellenberg;Wanlin Li;M. Shusterman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jordan Ellenberg其他文献
Jordan Ellenberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jordan Ellenberg', 18)}}的其他基金
Geometry of Arithmetic Statistics and Related Topics
算术统计几何及相关主题
- 批准号:
2301386 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Rational Points and Asymptotics of Distribution
有理点和分布渐进
- 批准号:
2001200 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Madison Moduli Weekend - A Conference on Moduli Spaces
麦迪逊 Moduli 周末 - Moduli 空间会议
- 批准号:
1955665 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Stability Phenomena in Number Theory, Algebraic Geometry, and Topology
数论、代数几何和拓扑中的稳定性现象
- 批准号:
1402620 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
EMSW21-RTG: Algebraic Geometry and Number Theory at the University of Wisconsin
EMSW21-RTG:威斯康星大学代数几何和数论
- 批准号:
0838210 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Moduli Spaces and Algebraic Structures in Homotopy Theory
同伦理论中的模空间和代数结构
- 批准号:
0705428 - 财政年份:2007
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Rational points on varieties and non-abelian Galois groups
职业:簇上的有理点和非阿贝尔伽罗瓦群
- 批准号:
0448750 - 财政年份:2005
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Rational points, Galois representations, and fundamental groups
有理点、伽罗瓦表示和基本群
- 批准号:
0401616 - 财政年份:2004
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似国自然基金
基于Rational Krylov法和小波域稀疏约束的时间域海洋电磁三维正反演研究
- 批准号:41804098
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Rational-Tensor(RTCam)摄像机模型的序列图像间几何框架研究
- 批准号:61072105
- 批准年份:2010
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Diversified study on Manin's conjecture for rational points/rational curves/motives
马宁有理点/有理曲线/动机猜想的多元化研究
- 批准号:
23H01067 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Rational points on modular curves, and the geometry of arithmetic statistics
模曲线上的有理点和算术统计的几何
- 批准号:
2302356 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
- 批准号:
RGPIN-2021-03821 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Integral points on stacks, hyperplane sections over finite fields, and vectors forming rational angles
堆栈上的积分点、有限域上的超平面截面以及形成有理角的向量
- 批准号:
2101040 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Rationality, Rationality Index, and Rational Points
理性、理性指数和理性点
- 批准号:
2101434 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Rational points on algebraic varieties
代数簇的有理点
- 批准号:
RGPIN-2017-03970 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
- 批准号:
DGECR-2021-00218 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Discovery Launch Supplement
Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
- 批准号:
RGPIN-2021-03821 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




