Madison Moduli Weekend - A Conference on Moduli Spaces
麦迪逊 Moduli 周末 - Moduli 空间会议
基本信息
- 批准号:1955665
- 负责人:
- 金额:$ 2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-15 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
'Madison Moduli Weekend' is a conference on moduli spaces to be held in Madison, Wisconsin between the 27th and 29th of March, 2020. Moduli spaces are of great significance in algebraic geometry and number theory, and a great number of perspectives have developed in order to study them. This conference aims to bring together a diverse group of mathematicians, ranging from early career graduate students to experts in this field, to discuss the big questions and techniques surrounding the study of moduli spaces. The conference will consist of five plenary lectures as well as multiple short talks by early career mathematicians. More details can be found at the conference website: https://sites.google.com/wisc.edu/madisonmoduliweekend/home.Moduli spaces parametrize families of objects of interest, up to a notion of isomorphism. Their study has motivated the development of many areas in arithmetic and algebraic geometry, in addition to having a significant impact on them. These include, but are not limited to the study of modular curves, Shimura varieties, Hurwitz spaces and the theory of stacks. The goal of this conference is to talk about both the arithmetic and the geometry of moduli spaces. The plenary speakers of this conference study moduli spaces in various contexts, including rational points, vector bundles, the theory of stacks, Brauer groups, K-theory and Hodge theory. Four of the five plenary talks will be preceded by preparatory talks aimed at graduate students and early postdoctoral researchers. The conference is aimed at an audience of mathematicians with a broad interest in algebraic geometry and number theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
“麦迪逊模数周末”是一个关于模数空间的会议,将于2020年3月27日至29日在威斯康星州的麦迪逊举行。模空间在代数几何和数论中具有重要意义,人们对其进行了大量的研究。这次会议的目的是聚集不同的数学家群体,从早期职业生涯的研究生到这一领域的专家,讨论围绕模空间研究的大问题和技术。会议将由五个全体讲座和多个早期职业数学家的简短演讲组成。更多细节可以在会议网站上找到:https://sites.google.com/wisc.edu/madisonmoduliweekend/home.Moduli空间将感兴趣的物体族参数化,直到同构的概念。他们的研究推动了算术和代数几何许多领域的发展,并对它们产生了重大影响。这些包括但不限于对模曲线、Shimura簇、Hurwitz空间和堆栈理论的研究。这次会议的目的是讨论模空间的算术和几何。这次会议的全体演讲者研究了各种背景下的模空间,包括有理点、向量丛、堆栈理论、布劳尔群、K-理论和Hodge理论。在五次全体会议之前,将有四次针对研究生和早期博士后研究人员的预备会议。这次会议的目标是对代数几何和数论有广泛兴趣的数学家观众。这个奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jordan Ellenberg其他文献
Jordan Ellenberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jordan Ellenberg', 18)}}的其他基金
Geometry of Arithmetic Statistics and Related Topics
算术统计几何及相关主题
- 批准号:
2301386 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
Rational Points and Asymptotics of Distribution
有理点和分布渐进
- 批准号:
2001200 - 财政年份:2020
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
Stability Phenomena in Number Theory, Algebraic Geometry, and Topology
数论、代数几何和拓扑中的稳定性现象
- 批准号:
1402620 - 财政年份:2014
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
EMSW21-RTG: Algebraic Geometry and Number Theory at the University of Wisconsin
EMSW21-RTG:威斯康星大学代数几何和数论
- 批准号:
0838210 - 财政年份:2009
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Moduli Spaces and Algebraic Structures in Homotopy Theory
同伦理论中的模空间和代数结构
- 批准号:
0705428 - 财政年份:2007
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
CAREER: Rational points on varieties and non-abelian Galois groups
职业:簇上的有理点和非阿贝尔伽罗瓦群
- 批准号:
0448750 - 财政年份:2005
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Rational points, Galois representations, and fundamental groups
有理点、伽罗瓦表示和基本群
- 批准号:
0401616 - 财政年份:2004
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
相似国自然基金
高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
- 批准号:11271070
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Research Grant
不確定特異性を持つ完全積分可能系の漸近解析・大域解析とmoduli空間の諸相
具有不确定奇点和模空间方面的完全可积系统的渐近分析/全局分析
- 批准号:
23K20219 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Moduli Spaces, Fundamental Groups, and Asphericality
职业:模空间、基本群和非球面性
- 批准号:
2338485 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
- 批准号:
2349810 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
- 批准号:
2401387 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
New development of complex analysis in several variables using moduli and closings of an open Riemann surface
使用开放黎曼曲面的模数和闭包进行多变量复分析的新发展
- 批准号:
23K03140 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
- 批准号:
23K03138 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Arithmetic, Birational Geometry, and Moduli
会议:算术、双有理几何和模
- 批准号:
2309181 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Conference: Richmond Geometry Meeting: Knots, Moduli, and Strings
会议:里士满几何会议:结、模数和弦
- 批准号:
2240741 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
- 批准号:
2304840 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Standard Grant