Microgel Tethering for Integrated Microarray-Based RNA Amplification and Detection

用于基于微阵列的集成 RNA 扩增和检测的微凝胶束缚

基本信息

  • 批准号:
    1402706
  • 负责人:
  • 金额:
    $ 32.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Proposal Number: 1402706P.I.: Libera, Matthew R.Title: Microgel Tethering for Integrated Microarray-Based RNA Amplification and DetectionSignificance:When a patient enters a hospital with symptoms suggesting some form of infection, determining whether an infection is present can take as long as 24 hours, and identifying the specific infectious species can take 72 hours or more. During that period, patients can suffer severely, because the lack of a clear and rapid diagnosis means that a patient may not receive the most appropriate treatment, such as the administration of the correct antibiotic, for hours or even days. While new technologies based on molecular diagnostics are beginning to mitigate this problem by rapidly identifying the DNA of infecting species, these new approaches are unable to keep up with the throughput required by major hospitals where dozens of such tests must be run every day. This research project is thus studying a new technology that has the potential to not only make a rapid diagnosis but also make many such diagnoses for many different patients. This technology uses hydrogels - similar to the materials in soft contact lenses and in disposal diapers - that are microscopic in size, so only a very small amount of target DNA is required for each test. The engineering and science questions that must be addressed center, first, on how to make these microscopic hydrogels and, second, how to modify them, so the chemical reactions needed for DNA detection can proceed accurately and quickly. Technical Project Description: Molecular diagnostic (MDx) technologies can detect infection and determine the infecting species to the level of an individual strain in times as short as one hour. However, the fundamental complexity of current MDx assays has hindered their widespread use in clinical settings. Many hospitals thus use MDx methods selectively and still rely heavily on the very slow, classical, method of sampling, culturing and phenotyping. A fundamental change to the current paradigm of MDx test development will require a new and different platform technology. We hypothesize that surface-patterned microgels can integrate detection, isothermal amplification, and extensive multiplexing in a single microfluidic chamber and thus, ultimately, simplify the overall molecular-diagnostic process. Specifically, this research project: (i) exploits an innovative, real-time, self-reporting, microarray-based detection method based on molecular beacon (MB) hybridization probes tethered to highly hydrated electron-beam-patterned poly(ethylene glycol) [PEG] microgels; (ii) is establishing a new microarray-based, isothermal, RNA amplification approach that places the amplification primers in immediate proximity to the MB detection probes and thus enables highly multiplexed assays; and (iii) takes advantage of the inherent microscaling properties of e-beam patterning and microfluidic assembly to control sample volume sizes and ultimately promote target-primer hybridization. Importantly, this project explores the new concept of solid-phase Nucleic Acid Sequence-Based Amplification (SP-NASBA) where the primers sets, like the molecular beacon probes, are tethered to surface-patterned microgels. Immobilizing the primers is a significant departure from current practice. Success will require a careful understanding of the nature and spatial distribution of chemically functional sites on the surface of an individual microgel as well as the partitioning of those sites to tether various amplification primers and molecular beacon detection probes.
提案编号:1402706P.I.:Libera,Matthew R.标题:基于微阵列的集成 RNA 扩增和检测的微凝胶束缚意义:当患者进入医院时出现提示某种形式感染的症状时,确定是否存在感染可能需要长达 24 小时的时间,而识别特定感染物种可能需要 72 小时或更长时间。 在此期间,患者可能会遭受严重的痛苦,因为缺乏明确和快速的诊断意味着患者可能数小时甚至数天都无法接受最适当的治疗,例如服用正确的抗生素。 虽然基于分子诊断的新技术开始通过快速识别感染物种的 DNA 来缓解这一问题,但这些新方法无法跟上大型医院所需的吞吐量,因为大型医院每天必须进行数十次此类测试。 因此,该研究项目正在研究一种新技术,该技术不仅有可能做出快速诊断,而且可以为许多不同的患者做出许多此类诊断。 该技术使用水凝胶——类似于软性隐形眼镜和一次性尿布中的材料——尺寸非常微小,因此每次测试只需要极少量的目标DNA。 必须解决的工程和科学问题首先是如何制造这些微观水凝胶,其次是如何对其进行修饰,以便 DNA 检测所需的化学反应能够准确、快速地进行。技术项目描述:分子诊断(MDx)技术可以在短短一小时内检测感染并确定感染物种至单个菌株的水平。 然而,当前 MDx 检测的基本复杂性阻碍了它们在临床环境中的广泛使用。 因此,许多医院选择性地使用 MDx 方法,但仍然严重依赖非常缓慢的经典采样、培养和表型分析方法。当前 MDx 测试开发模式的根本改变将需要新的、不同的平台技术。我们假设表面图案化的微凝胶可以在单个微流体室中集成检测、等温扩增和广泛的多重检测,从而最终简化整个分子诊断过程。 具体来说,该研究项目:(i)开发一种创新的、实时的、自我报告的、基于微阵列的检测方法,该方法基于连接到高度水合的电子束图案聚(乙二醇)[PEG]微凝胶上的分子信标(MB)杂交探针; (ii) 正在建立一种新的基于微阵列的等温 RNA 扩增方法,该方法将扩增引物置于紧邻 MB 检测探针的位置,从而实现高度多重分析; (iii) 利用电子束图案化和微流体组装固有的微尺度特性来控制样品体积大小并最终促进靶标-引物杂交。 重要的是,该项目探索了固相核酸序列扩增(SP-NASBA)的新概念,其中引物组(如分子信标探针)被束缚在表面图案化的微凝胶上。 固定引物与当前实践有很大不同。 成功需要仔细了解单个微凝胶表面化学功能位点的性质和空间分布,以及这些位点的划分以束缚各种扩增引物和分子信标检测探针。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Libera其他文献

Multilayered Thin-Film Materials for Phase-Change Erasable Storage
  • DOI:
    10.1557/s0883769400059947
  • 发表时间:
    2013-11-29
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Matthew Libera;Martin Chen
  • 通讯作者:
    Martin Chen
Effects of implantation temperature on the structure, composition, and oxidation resistance of aluminum-implanted SiC
  • DOI:
    10.1557/jmr.1995.1441
  • 发表时间:
    2011-03-03
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Zunde Yang;Honghua Du;Matthew Libera;Irwin L. Singer
  • 通讯作者:
    Irwin L. Singer
The 2023 Orthopedic Research Society's international consensus meeting on musculoskeletal infection: Summary from the in vitro section
2023年骨科研究会肌肉骨骼感染国际共识会议:体外部分总结
  • DOI:
    10.1002/jor.25774
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Noreen J. Hickok;Bingyun Li;Ebru Oral;S. Zaat;David A. Armbruster;Gerald J. Atkins;Antonia F. Chen;Débora C. Coraça‐Huber;Tianhong Dai;Edward M. Greenfield;Rajendra Kasinath;Matthew Libera;Cláudia N H Marques;T. Fintan Moriarty;K. Scott Phillips;Kapil Raghuraman;Dacheng Ren;Lia Rimondini;K. Saeed;Thomas P. Schaer;Edward M. Schwarz;Christopher Spiegel;P. Stoodley;Vi Khanh Truong;Shao‐Ting Jerry Tsang;B. Wildemann;A. R. Zelmer;A. Zinkernagel
  • 通讯作者:
    A. Zinkernagel

Matthew Libera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Libera', 18)}}的其他基金

Conference: The 6th Stevens Conference on Bacteria-Material Interactions
会议:第六届史蒂文斯细菌-材料相互作用会议
  • 批准号:
    2309091
  • 财政年份:
    2023
  • 资助金额:
    $ 32.03万
  • 项目类别:
    Standard Grant
Collaborative Research: GCR: Infection-Resisting Resorbable Scaffolds for Engineering Human Tissue
合作研究:GCR:用于工程人体组织的抗感染可吸收支架
  • 批准号:
    2219014
  • 财政年份:
    2022
  • 资助金额:
    $ 32.03万
  • 项目类别:
    Continuing Grant
The 5th Stevens Conference on Bacteria-Material Interactions
第五届史蒂文斯细菌-材料相互作用会议
  • 批准号:
    1907604
  • 财政年份:
    2019
  • 资助金额:
    $ 32.03万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Transmission Electron Microscope for Materials Research
MRI:购买透射电子显微镜用于材料研究
  • 批准号:
    1827557
  • 财政年份:
    2018
  • 资助金额:
    $ 32.03万
  • 项目类别:
    Standard Grant
Bacteria-Triggered Antimicrobial Release from Microgel-Modified Surfaces
微凝胶改性表面的细菌触发抗菌剂释放
  • 批准号:
    1608406
  • 财政年份:
    2016
  • 资助金额:
    $ 32.03万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a High-Pressure Freezing System for Cryo-Electron Microscopy
MRI:获取用于冷冻电子显微镜的高压冷冻系统
  • 批准号:
    1428296
  • 财政年份:
    2014
  • 资助金额:
    $ 32.03万
  • 项目类别:
    Standard Grant
Conference on Bacteria-Material Interactions
细菌-材料相互作用会议
  • 批准号:
    1301740
  • 财政年份:
    2013
  • 资助金额:
    $ 32.03万
  • 项目类别:
    Standard Grant
I-Corps: Gel-Tethered Molecular Beacons
I-Corps:凝胶束缚分子信标
  • 批准号:
    1262903
  • 财政年份:
    2012
  • 资助金额:
    $ 32.03万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Field Emission Cryo-Scanning Electron Microscope for Nanocharacterization and Patterning of Soft Materials
MRI:获取场发射冷冻扫描电子显微镜,用于软材料的纳米表征和图案化
  • 批准号:
    0922522
  • 财政年份:
    2009
  • 资助金额:
    $ 32.03万
  • 项目类别:
    Standard Grant
NIRT: Self-Assembled Nanohydrogels for Differential Cell Adhesion and Infection Control
NIRT:用于差异细胞粘附和感染控制的自组装纳米水凝胶
  • 批准号:
    0708379
  • 财政年份:
    2007
  • 资助金额:
    $ 32.03万
  • 项目类别:
    Standard Grant

相似海外基金

Structural and functional studies of the VAPB-PTPIP51 ER-mitochondria tethering proteins in neurodegenerative diseases
神经退行性疾病中 VAPB-PTPIP51 ER 线粒体束缚蛋白的结构和功能研究
  • 批准号:
    MR/X021858/1
  • 财政年份:
    2023
  • 资助金额:
    $ 32.03万
  • 项目类别:
    Research Grant
Highly Multiplexed Single Molecule Tethering
高度多重化的单分子束缚
  • 批准号:
    10760792
  • 财政年份:
    2023
  • 资助金额:
    $ 32.03万
  • 项目类别:
Dissecting the Molecular Mechanisms of Exocytic Vesicle Tethering and Fusion
剖析胞吐囊泡束缚和融合的分子机制
  • 批准号:
    10552360
  • 财政年份:
    2023
  • 资助金额:
    $ 32.03万
  • 项目类别:
Leap-Ahead Power and Tethering (LAPT) Program for Remote Offshore Inspections
用于远程海上检查的跨越式电力和网络共享 (LAPT) 计划
  • 批准号:
    10037262
  • 财政年份:
    2023
  • 资助金额:
    $ 32.03万
  • 项目类别:
    Collaborative R&D
Immunosuppression-free islet transplantation via localized immunomodulatory exosome tethering
通过局部免疫调节外泌体束缚进行无免疫抑制的胰岛移植
  • 批准号:
    10610867
  • 财政年份:
    2022
  • 资助金额:
    $ 32.03万
  • 项目类别:
Enhancing Grid-Scalable Battery Technologies by Tethering Active Species to Sustainable Carbon Nanoparticles
通过将活性物质与可持续碳纳米粒子结合来增强电网可扩展电池技术
  • 批准号:
    568709-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 32.03万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Identifying pathway-specific roles of endosomal tethering factors in a budding yeast model
识别芽殖酵母模型中内体束缚因子的途径特异性作用
  • 批准号:
    559966-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 32.03万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Immunosuppression-free islet transplantation via localized immunomodulatory exosome tethering
通过局部免疫调节外泌体束缚进行无免疫抑制的胰岛移植
  • 批准号:
    10348870
  • 财政年份:
    2022
  • 资助金额:
    $ 32.03万
  • 项目类别:
Collaborative Research: EAGER: Development of an Artificial Chromosome System in Chlamydomonas Based on CENH3 Tethering
合作研究:EAGER:基于 CENH3 束缚的衣藻人工染色体系统的开发
  • 批准号:
    2151106
  • 财政年份:
    2022
  • 资助金额:
    $ 32.03万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Development of an Artificial Chromosome System in Chlamydomonas Based on CENH3 Tethering
合作研究:EAGER:基于 CENH3 束缚的衣藻人工染色体系统的开发
  • 批准号:
    2151105
  • 财政年份:
    2022
  • 资助金额:
    $ 32.03万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了