Bacteria-Triggered Antimicrobial Release from Microgel-Modified Surfaces

微凝胶改性表面的细菌触发抗菌剂释放

基本信息

  • 批准号:
    1608406
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Technical Abstract: This project combines emerging concepts of bacteria-triggered release, contact bacterial killing, and differential cell interactions to construct a new means with which to render tissue-contacting biomaterial surfaces resistant to bacterial colonization. The primary scientific objective is to understand the materials properties governing the triggered release of complexation-sequestered cationic antimicrobials. This project will: (1) identify a set of antimicrobial peptides (AMPs) with varying charge, charge distribution, and hydrophobicity that can complex within model, surface-immobilized, anionic micro hydrogels (microgels) under four-week exposure to physiological buffer conditions; (2) show that sequestered peptides are protected from proteolytic degradation; (3) establish whether AMP release from the microgels can be triggered by direct physico-chemical contact with bacteria; (4) determine whether direct physicochemical contact with tissue cells (e.g. macrophages) triggers AMP release; and (5) demonstrate that AMP-loaded microgel-modified surfaces resist bacterial colonization while still enabling the integration of tissue cells. The intellectual merit of this research work centers on the fact that this project will provide insights into the relative roles of electrostatic and hydrophobic interactions between small-molecule cationic antimicrobials and synthetic anionic microgels. This basic information will guide the future design of new microgels with enhanced charge, charge distribution, and hydrophobicity that can broaden the bacteria-triggered release mechanisms to an even wider range of antimicrobials. Significantly, this project will also involve both graduate and undergraduate research students who will work not only at Stevens but also in close collaboration with colleagues from Zimmer Trabecular Metals and will benefit from both the basic academic and applied industrial perspectives of this project. Non-Technical Abstract: Most of us know someone who has had a hip or knee replacement. Such joint replacement has become common and can have a very positive impact on the quality of life. Many people are unaware, however, that joint replacements can fail, most commonly because of infection. Failure due to infection also occurs in other implants like hernia meshes, pacemakers, and heart valves. Infection occurs when bacteria adhere to the implant surface and grow into colonies called biofilms, like the stuff that grows on our teeth when we don?t brush. Importantly, antibiotics don't kill bacteria in a biofilm. So, we have to develop implant surfaces that inhibit bacteria fro' adhering. Then, for those bacteria that do manage to adhere, we need to kill them before they form a biofilm. This isn't an easy problem. The problem is further complicated by the fact that the FDA is understandably reluctant to approve implantable biomedical devices that incorporate antibiotics into them, because, in the many cases where infection is not a problem, the unneeded antibiotics help cultivate resistant bacteria like MRSA. This research project, funded by the Biomaterials Program within the National Science Foundation's Division of Materials Research, is designed to understand the fundamental science that can enable a new technology to prevent implant infection. The idea is to cover an implant surface with microscope particles called microgels and load them with bacteria-killing molecules called antimicrobial peptides. The central scientific problem is to understand how to keep these antimicrobial peptides trapped inside the microgels unless a bacterium happens to come along. At that point, and only at that point, the microgels have to be designed to release the peptide and kill the bacterium. If NSF-funded scientists can figure out how to accomplish this task, people needing biomedical implants will have a greater probability of surgical success with healthier outcomes.
技术摘要:该项目结合了细菌触发释放,接触细菌杀灭和差异细胞相互作用的新兴概念,以构建一种新的方法,使组织接触生物材料表面抵抗细菌定植。主要的科学目标是了解控制络合螯合阳离子抗菌剂触发释放的材料特性。该项目将:(1)鉴定一组具有不同电荷、电荷分布和疏水性的抗微生物肽(AMP),其可以在模型、表面固定的阴离子微水凝胶内复合(2)显示隔离的肽被保护免于蛋白水解降解;(3)确定AMP从微凝胶中的释放是否可以通过与细菌的直接物理化学接触来触发;(5)证明AMP负载的微凝胶修饰的表面抵抗细菌定殖,同时仍然能够整合组织细胞。这项研究工作的智力价值集中在这样一个事实上,即该项目将提供洞察小分子阳离子抗菌剂和合成阴离子微凝胶之间的静电和疏水相互作用的相对作用。 这些基本信息将指导未来设计具有增强的电荷,电荷分布和疏水性的新型微凝胶,这些微凝胶可以将细菌触发的释放机制扩展到更广泛的抗菌剂。 值得注意的是,该项目还将涉及研究生和本科生研究生,他们不仅将在Stevens工作,还将与Zimmer Trabecular Metals的同事密切合作,并将从该项目的基础学术和应用工业角度受益。 非技术摘要:我们大多数人都知道有人做过髋关节或膝关节置换术。 这种关节置换已经变得很普遍,可以对生活质量产生非常积极的影响。 然而,许多人不知道关节置换术可能失败,最常见的原因是感染。 感染导致的失效也发生在其他植入物中,如疝补片、起搏器和心脏瓣膜。 当细菌附着在植入物表面并生长成称为生物膜的菌落时,就会发生感染,就像我们不戴时牙齿上生长的东西一样。不要刷牙。 重要的是,抗生素不会杀死生物膜中的细菌。 所以,我们必须开发出能抑制细菌附着的植入物表面。 然后,对于那些设法粘附的细菌,我们需要在它们形成生物膜之前杀死它们。 这不是一个简单的问题。 这个问题进一步复杂化,因为FDA不愿意批准将抗生素纳入其中的植入式生物医学设备,这是可以理解的,因为在许多情况下,感染不是问题,不需要的抗生素有助于培养耐药性细菌,如MRSA。 该研究项目由美国国家科学基金会材料研究部的生物材料计划资助,旨在了解能够实现预防植入物感染的新技术的基础科学。 这个想法是用称为微凝胶的显微镜颗粒覆盖植入物表面,并将它们与称为抗菌肽的杀菌分子一起加载。 核心的科学问题是了解如何保持这些抗菌肽被困在微凝胶内,除非细菌碰巧沿着而来。 在这一点上,也只有在这一点上,微凝胶必须被设计为释放肽并杀死细菌。 如果NSF资助的科学家能够找出如何完成这项任务,需要生物医学植入物的人将有更大的可能性获得更健康的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Libera其他文献

Multilayered Thin-Film Materials for Phase-Change Erasable Storage
  • DOI:
    10.1557/s0883769400059947
  • 发表时间:
    2013-11-29
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Matthew Libera;Martin Chen
  • 通讯作者:
    Martin Chen
Effects of implantation temperature on the structure, composition, and oxidation resistance of aluminum-implanted SiC
  • DOI:
    10.1557/jmr.1995.1441
  • 发表时间:
    2011-03-03
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Zunde Yang;Honghua Du;Matthew Libera;Irwin L. Singer
  • 通讯作者:
    Irwin L. Singer
The 2023 Orthopedic Research Society's international consensus meeting on musculoskeletal infection: Summary from the in vitro section
2023年骨科研究会肌肉骨骼感染国际共识会议:体外部分总结
  • DOI:
    10.1002/jor.25774
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Noreen J. Hickok;Bingyun Li;Ebru Oral;S. Zaat;David A. Armbruster;Gerald J. Atkins;Antonia F. Chen;Débora C. Coraça‐Huber;Tianhong Dai;Edward M. Greenfield;Rajendra Kasinath;Matthew Libera;Cláudia N H Marques;T. Fintan Moriarty;K. Scott Phillips;Kapil Raghuraman;Dacheng Ren;Lia Rimondini;K. Saeed;Thomas P. Schaer;Edward M. Schwarz;Christopher Spiegel;P. Stoodley;Vi Khanh Truong;Shao‐Ting Jerry Tsang;B. Wildemann;A. R. Zelmer;A. Zinkernagel
  • 通讯作者:
    A. Zinkernagel

Matthew Libera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Libera', 18)}}的其他基金

Conference: The 6th Stevens Conference on Bacteria-Material Interactions
会议:第六届史蒂文斯细菌-材料相互作用会议
  • 批准号:
    2309091
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: GCR: Infection-Resisting Resorbable Scaffolds for Engineering Human Tissue
合作研究:GCR:用于工程人体组织的抗感染可吸收支架
  • 批准号:
    2219014
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
The 5th Stevens Conference on Bacteria-Material Interactions
第五届史蒂文斯细菌-材料相互作用会议
  • 批准号:
    1907604
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Transmission Electron Microscope for Materials Research
MRI:购买透射电子显微镜用于材料研究
  • 批准号:
    1827557
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Microgel Tethering for Integrated Microarray-Based RNA Amplification and Detection
用于基于微阵列的集成 RNA 扩增和检测的微凝胶束缚
  • 批准号:
    1402706
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a High-Pressure Freezing System for Cryo-Electron Microscopy
MRI:获取用于冷冻电子显微镜的高压冷冻系统
  • 批准号:
    1428296
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Conference on Bacteria-Material Interactions
细菌-材料相互作用会议
  • 批准号:
    1301740
  • 财政年份:
    2013
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
I-Corps: Gel-Tethered Molecular Beacons
I-Corps:凝胶束缚分子信标
  • 批准号:
    1262903
  • 财政年份:
    2012
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Field Emission Cryo-Scanning Electron Microscope for Nanocharacterization and Patterning of Soft Materials
MRI:获取场发射冷冻扫描电子显微镜,用于软材料的纳米表征和图案化
  • 批准号:
    0922522
  • 财政年份:
    2009
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
NIRT: Self-Assembled Nanohydrogels for Differential Cell Adhesion and Infection Control
NIRT:用于差异细胞粘附和感染控制的自组装纳米水凝胶
  • 批准号:
    0708379
  • 财政年份:
    2007
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似海外基金

SONNETS: Scalability Oriented Novel Network of Event Triggered Systems
SONNETS:面向可扩展性的事件触发系统新型网络
  • 批准号:
    EP/X036006/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
CAREER: Transformative Understanding of Rainfall-Triggered Landslides with Vegetation Effects from a Climate Change Perspective: Initiation and Consequences
职业:从气候变化的角度对降雨引发的山体滑坡及其植被影响进行变革性的理解:起因和后果
  • 批准号:
    2340657
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Corrosion triggered self-passivation of magnesium alloys
腐蚀引发镁合金的自钝化
  • 批准号:
    DP240101430
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Projects
Single cell level elucidation of local cell death-triggered regeneration mechanism in Arabidopsis
单细胞水平阐明拟南芥局部细胞死亡触发的再生机制
  • 批准号:
    24K17869
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Molecular Mechanisms of Age-Related Skin Diseases Triggered by Age-Related Alterations in the Local Endocrine System of the Skin
皮肤局部内分泌系统年龄相关变化引发的年龄相关性皮肤病的分子机制
  • 批准号:
    23H03339
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SBIR Phase I: Design and Development of Minimally-Invasive Orthopedic Fracture Fixation Using Intramedullary Sleeve and Injectable, Light-Triggered Bone Cement
SBIR 第一阶段:使用髓内套管和可注射光触发骨水泥的微创骨科骨折固定的设计和开发
  • 批准号:
    2322411
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Endocrine tissue molecular pathways dysregulated by immune checkpoint inhibitors causing ICI-triggered adverse events
免疫检查点抑制剂导致内分泌组织分子通路失调,导致 ICI 引发的不良事件
  • 批准号:
    10648465
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Effector-triggered immunity against Legionella pneumophila in dendritic cells
树突状细胞中针对嗜肺军团菌的效应子触发免疫
  • 批准号:
    10753211
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Towards Personalized Prosthetic Graft Replacement for Genetically Triggered Thoracic Aortic Aneurysms
针对基因触发的胸主动脉瘤的个性化假体移植
  • 批准号:
    10753115
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Understanding and targeting fibroblast activation in influenza-triggered lung inflammation and post-viral disease
了解和靶向流感引发的肺部炎症和病毒后疾病中的成纤维细胞激活
  • 批准号:
    10717809
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了