DISSERTATION RESEARCH: Accounting for spatial autocorrelation in species distribution models using a Bayesian framework: consequences for predictions across space and time

论文研究:使用贝叶斯框架解释物种分布模型中的空间自相关:跨空间和时间预测的后果

基本信息

  • 批准号:
    1404187
  • 负责人:
  • 金额:
    $ 1.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

Ecologists combine an understanding of current conditions with models to predict the effects of future environmental conditions on populations and communities. Many of the models used are incomplete, hindering these important predictions. This project improves predictions of where species will occur as environments change by including new data on the similarity, or degree of dependency, among observations that are closely associated in space. It will significantly advance fundamental research in ecology. Simultaneously, the research will result in a clearer general understanding of how species will respond to increasing habitat degradation, invasive species, disease, and climate change, thereby contributing directly to biodiversity conservation. The goal of this research is to investigate the relationship between stream flow variability, spatial relatedness, and fish species occurrence across sites within the Big River watershed in East Central Missouri while developing statistical techniques to account for the effects of spatial autocorrelation on species distribution predictions. Spatial autocorrelation is the positive association between the proximity of sample locations and the similarity of data at each location. It reduces the accuracy of current species distribution models. Stream fish assemblages at 50 sites across the watershed will be sampled and predicted based on spatial relatedness to other sampling sites and flow variability data estimated from high resolution in-stream depth gauges. The Big River watershed is a primary focus of collaborative conservation efforts by the Missouri Department of Conservation and The Nature Conservancy in Missouri. The data and results generated from this study will be of practical use by these agencies during their attempts to balance human activities and the conservation of biodiversity in this unique aquatic ecosystem. The project will significantly enhance ongoing dissertation research by providing field tests of model predictions, broadening and strengthening graduate student training.
生态学家将对当前条件的理解与模型相结合,以预测未来环境条件对人口和社区的影响。许多使用的模型是不完整的,阻碍了这些重要的预测。该项目通过纳入在空间中密切相关的观察中有关相似性或依赖程度的新数据,改进了对物种在环境变化时将出现在何处的预测。这将显著推进生态学的基础研究。同时,这项研究将使人们更清楚地了解物种如何应对日益严重的栖息地退化、入侵物种、疾病和气候变化,从而直接促进生物多样性的保护。本研究的目的是研究密苏里中东部大河流域各地点的流量变异性、空间相关性和鱼类发生之间的关系,同时开发统计技术来解释空间自相关对物种分布预测的影响。空间自相关是样本位置的接近性和每个位置数据的相似性之间的正相关。它降低了当前物种分布模型的准确性。根据与其他采样点的空间相关性和高分辨率流内深度计估计的流量变异性数据,将对流域内50个地点的溪流鱼类种群进行采样和预测。大河流域是密苏里州自然保护部和密苏里州自然保护协会合作保护工作的主要焦点。这项研究产生的数据和结果将在这些机构试图平衡人类活动和保护这一独特的水生生态系统中的生物多样性时具有实际用途。该项目将通过提供模型预测的实地测试,扩大和加强研究生培训,大大加强正在进行的论文研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Knouft其他文献

Jason Knouft的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Knouft', 18)}}的其他基金

Collaborative Research: ABI Development: HydroClim: Empowering aquatic research in North America with data from high-resolution streamflow and water temperature GIS modeling
合作研究:ABI 开发:HydroClim:利用高分辨率水流和水温 GIS 建模数据增强北美水生研究的能力
  • 批准号:
    1564896
  • 财政年份:
    2016
  • 资助金额:
    $ 1.96万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: Hydrological characteristics, trophic interactions, and fish assemblage structure in temperate stream systems
论文研究:温带河流系统的水文特征、营养相互作用和鱼类组合结构
  • 批准号:
    1311179
  • 财政年份:
    2013
  • 资助金额:
    $ 1.96万
  • 项目类别:
    Standard Grant
CAREER: Development of GIS applications for the study of aquatic biodiversity: Assessing environmental factors regulating fish assemblages across multiple scales
职业:开发用于水生生物多样性研究的 GIS 应用程序:评估多个尺度上调节鱼类组合的环境因素
  • 批准号:
    0844644
  • 财政年份:
    2009
  • 资助金额:
    $ 1.96万
  • 项目类别:
    Continuing Grant
Research Starter Grant: Island-Net (Phase I): a Web-Accessible Ecological Database for the Study of Global Taxonomic and Environmental Data on Islands
研究启动资助:Island-Net(第一阶段):用于研究岛屿全球分类和环境数据的可通过网络访问的生态数据库
  • 批准号:
    0504587
  • 财政年份:
    2005
  • 资助金额:
    $ 1.96万
  • 项目类别:
    Standard Grant
Postdoctoral Research Fellowship in Biological Informatics for FY 2002
2002财年生物信息学博士后研究奖学金
  • 批准号:
    0204144
  • 财政年份:
    2002
  • 资助金额:
    $ 1.96万
  • 项目类别:
    Fellowship Award

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Empirical research on bank lenders' use of accounting information
银行贷款人使用会计信息的实证研究
  • 批准号:
    23K01665
  • 财政年份:
    2023
  • 资助金额:
    $ 1.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on Impact and Adaptation of Digitalization to Management Accounting
数字化对管理会计的影响及适应研究
  • 批准号:
    23K01709
  • 财政年份:
    2023
  • 资助金额:
    $ 1.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An Empirical Research on Macroeconomic Uncertainty and the Usefulness of Accounting Information
宏观经济不确定性与会计信息有用性的实证研究
  • 批准号:
    23K01670
  • 财政年份:
    2023
  • 资助金额:
    $ 1.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Accounting and well-being research based on computer science
基于计算机科学的会计与福祉研究
  • 批准号:
    22K01811
  • 财政年份:
    2022
  • 资助金额:
    $ 1.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on Conflicts in Management Accounting Change with Institutional Theory as the Theoretical Basis
以制度理论为理论基础的管理会计变革冲突研究
  • 批准号:
    22K20148
  • 财政年份:
    2022
  • 资助金额:
    $ 1.96万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Scientific Research of Accounting Informatics
会计信息学科学研究
  • 批准号:
    22H00895
  • 财政年份:
    2022
  • 资助金额:
    $ 1.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Empirical Research on the Effects and Disfunctions of Tension Management by Management Accounting
管理会计对张力管理作用与弊端的实证研究
  • 批准号:
    22K01816
  • 财政年份:
    2022
  • 资助金额:
    $ 1.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research into the Nature of Accounting Change: Analysis of the Impact of Theory on Practice and Institutions using BERT.
研究会计变革的本质:使用 BERT 分析理论对实践和制度的影响。
  • 批准号:
    22K01803
  • 财政年份:
    2022
  • 资助金额:
    $ 1.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical and empirical research on the role of organizational identity in performance management accounting
组织认同在绩效管理会计中作用的理论与实证研究
  • 批准号:
    22K01791
  • 财政年份:
    2022
  • 资助金额:
    $ 1.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the basis for settings accounting standards for derecognition of financial assets
金融资产终止确认会计准则的制定依据研究
  • 批准号:
    21K01798
  • 财政年份:
    2021
  • 资助金额:
    $ 1.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了