High-Dimensional Covariance Estimation via Convex Optimization
通过凸优化进行高维协方差估计
基本信息
- 批准号:1405746
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern technologies allow researchers to measure an unprecedentedly large number of attributes regarding the subjects of their study. An important question in many applications is how one can infer from such data the underlying relationships between these attributes. Such an objective can be expressed through a fundamental construct in the field of statistics known as the covariance matrix. Using classical statistical techniques would require one to collect data on a prohibitively large number of subjects to reliably estimate this matrix. In this work, novel statistical methods will be developed that allow researchers to make sound inferences by making better use of their data given the limited number of subjects they have available. The methods developed will be applicable in a wide range of fields. For example, in biology, one can infer the structures of massive networks of genes based on a small number of samples. Beyond being an end in itself, the covariance matrix is a key ingredient in many common statistical procedures. Thus, by developing the ability to reliably estimate it from small numbers of subjects, this work will enable the use of many other methods that would otherwise be unavailable to researchers. Application areas include disease diagnosis, basic biology, sensor networks, and social networks.The research program will focus on high-dimensional covariance estimation and capitalize on the strengths of the convex framework to develop novel statistical methodology. This work will involve developing efficient algorithms, thoroughly investigating the properties of estimators and algorithms through a combination of theory and simulation, and applying methods to real datasets. The research focus is in two main areas: (A) In certain applications, the variables have a known ordering. Such structure suggests the use of a convex penalty not previously applied to covariance estimation. This work will carefully study using such a penalty to estimate both the covariance matrix and the inverse covariance matrix. (B) Estimating a covariance matrix as a simultaneously sparse and positive definite matrix is a natural goal, and yet the standard penalized likelihood approach is not convex. This research will develop convex-optimization-based estimators that still make use of the likelihood. For all projects, software will be produced, made freely available online, and maintained so that other researchers can benefit from its use.
现代技术使研究人员能够测量与其研究对象有关的前所未有的大量属性。 在许多应用程序中的一个重要问题是如何从这些数据中推断出这些属性之间的潜在关系。 这样一个目标可以通过统计学领域的一个基本结构来表达,称为协方差矩阵。 使用经典的统计技术将需要一个收集数据的数量惊人的主题,以可靠地估计这个矩阵。 在这项工作中,将开发新的统计方法,使研究人员能够通过更好地利用他们的数据,使他们有限的人数,他们可以作出合理的推断。 开发的方法将适用于广泛的领域。 例如,在生物学中,人们可以根据少量样本推断出大量基因网络的结构。 协方差矩阵除了本身是目的之外,还是许多常见统计过程中的关键成分。 因此,通过开发从少量受试者中可靠地估计它的能力,这项工作将使研究人员能够使用许多其他方法。 应用领域包括疾病诊断、基础生物学、传感器网络和社交网络。该研究计划将专注于高维协方差估计,并利用凸框架的优势开发新的统计方法。 这项工作将涉及开发有效的算法,通过理论和模拟相结合,彻底调查估计和算法的属性,并将方法应用于真实的数据集。 研究的重点是在两个主要领域:(A)在某些应用中,变量有一个已知的顺序。 这样的结构建议使用以前没有应用到协方差估计的凸惩罚。 这项工作将仔细研究使用这种惩罚来估计协方差矩阵和逆协方差矩阵。 (B)将协方差矩阵估计为同时稀疏和正定的矩阵是一个自然的目标,然而标准的惩罚似然方法不是凸的。 这项研究将开发基于凸优化的估计,仍然利用的可能性。 对于所有项目,将制作软件,免费提供在线,并进行维护,以便其他研究人员可以从其使用中受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Bien其他文献
Inference on the proportion of variance explained in principal component analysis
主成分分析解释方差比例的推断
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ronan Perry;Snigdha Panigrahi;Jacob Bien;Daniela Witten - 通讯作者:
Daniela Witten
Jacob Bien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob Bien', 18)}}的其他基金
CAREER: Flexible Parsimonious Models for Complex Data
职业:复杂数据的灵活简约模型
- 批准号:
1653017 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
CAREER: Flexible Parsimonious Models for Complex Data
职业:复杂数据的灵活简约模型
- 批准号:
1748166 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
相似海外基金
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Estimation of Smooth Functionals of Covariance and Other Parameters of High-Dimensional Models
高维模型协方差和其他参数的平滑泛函的估计
- 批准号:
1810958 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Estimation of Functionals of High Dimensional Covariance Matrices
高维协方差矩阵泛函的估计
- 批准号:
1209191 - 财政年份:2012
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Sufficient dimension reduction of high-dimensional data through regularized covariance estimation
通过正则化协方差估计对高维数据进行充分降维
- 批准号:
1105650 - 财政年份:2011
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Variable Selection in High Dimensional Feature Space with Applications to Covariance Matrix Estimation and Functional Data Analysis
高维特征空间中的变量选择及其在协方差矩阵估计和函数数据分析中的应用
- 批准号:
0806030 - 财政年份:2008
- 资助金额:
$ 12万 - 项目类别:
Standard Grant