High-Frequency Graphene Nanoelectronic Vapor Sensors for Micro-Gas Chromatography

用于微型气相色谱的高频石墨烯纳米电子蒸汽传感器

基本信息

项目摘要

ECCS Prop. No. 1405870Proposal Title: High-Frequency Graphene Nanoelectronic Vapor Sensors for Micro-Gas ChromatographyProposal GoalThe goal of the proposal is to fundamentally study and subsequently pioneer a radicallydifferent graphene sensing mechanism based on detection of vapor molecules diploe moments.Nontechnical AbstractChemical Vapor sensor technologies are crucial for several applications which can bring fundamental changes to environmental protection and personalized healthcare. Unfortunately, current generation of nanoelectronic vapor sensors is too slow for practical use, and the challenge lies intrinsically in its sensing mechanism. To address this fundamental challenge, the proposal aims to pioneer a dipole-detection based sensing mechanism which can offer orders of magnitude improvement in both speed and sensitivity compared to the current state-of-the-art. The success of the proposed project will open a door to developing a plethora of vapor sensing technologies with a broad range of applications in environmental protection, industry safety, biomedicine, and homeland security. In addition, the knowledge and techniques acquired through the proposed research can readily be extended to study and detect biomolecules (such as DNAs and proteins) in the aqueous environment. More broadly, the proposed project is highly interdisciplinary and should advance science and technology in areas of nanomaterials, nanoelectronics, sensing technology, and device physics. The project also includes a prominent outreach and education program, which promotes awareness of and interest in nanoscience and nanotechnology among K-12 and undergraduate students. The knowledge and research findings resulting from this project will be integrated into a number of new nanotechnology courses currently under development that are related to carbon nanotechnology, biomedical instrumentation, and biological/chemical sensing. This project will be further enhanced by proactively recruiting underrepresented students, which can significantly improve the diversity of science, technology, engineering, and mathematics (STEM) disciplines and workforce.Technical AbstractThe goal of the proposed project is to fundamentally study and subsequently pioneer a radically different graphene sensing mechanism based on detection of vapor molecules diploe moments. In contrast to the existing nanoelectronic sensors where the direct current (DC) signal is used, this approach utilizes the graphene transistor as a high-frequency mixer with surface-absorbed molecules functioning as an electrostatic gate. The molecular dipole is excited by alternating current (AC) driving voltage; the oscillating dipole in turn generates an AC conductance modulation on the graphene transistor, which can be detected by measuring the mixing current. By going into higher frequencies, the slow sensing response in the conventional nanoelectronic sensor can be overcome when the AC field switching outpaces the slow dynamics of interface states, thus resulting in 2-3 orders of magnitude faster sensing speed (~0.1 s) and 10-fold better sensitivity (~1 pg) than the state-of-the-art. The specific tasks include: 1) Fundamental study of high-frequency graphene nanoelectronic sensing mechanism; 2) Design, fabrication, characterization, and optimization of the proposed graphene vapor sensors; 3) On-chip integration of graphene vapor sensor with micro-gas chromatography (micro-GC) device. The project will generate fundamental and detailed understanding at the nanometer scale about how molecules behave under high-frequency excitation and how they interact with the graphene. In addition, the integration of graphene vapor sensor array with an on-chip micro-GC device will truly showcase the advantages of a nanoelectronic sensor that not only has high speed and high sensitivity, but also is non-destructive and highly compatible with on-chip fabrication/integration technologies.
ECCS道具吗。提案标题:用于微气相色谱的高频石墨烯纳米电子蒸汽传感器提案目标该提案的目标是从根本上研究并随后开创一种基于蒸汽分子偶极矩检测的完全不同的石墨烯传感机制。摘要化学蒸汽传感器技术在环境保护和个性化医疗保健领域具有重要的应用价值。遗憾的是,目前这一代纳米电子蒸汽传感器的实际应用速度太慢,其挑战本质上在于其传感机制。为了解决这一基本挑战,该提案旨在开拓一种基于偶极子探测的传感机制,与目前最先进的技术相比,该机制可以在速度和灵敏度方面提供数量级的改进。该项目的成功将为开发大量的蒸汽传感技术打开一扇大门,这些技术在环境保护、工业安全、生物医学和国土安全方面有着广泛的应用。此外,通过提出的研究获得的知识和技术可以很容易地扩展到研究和检测水环境中的生物分子(如dna和蛋白质)。更广泛地说,拟议的项目是高度跨学科的,应该推进纳米材料、纳米电子学、传感技术和器件物理领域的科学和技术。该项目还包括一个突出的推广和教育计划,以提高K-12和本科生对纳米科学和纳米技术的认识和兴趣。这个项目产生的知识和研究成果将被整合到目前正在开发的一些新的纳米技术课程中,这些课程与碳纳米技术、生物医学仪器和生物/化学传感有关。通过积极招收代表性不足的学生,该项目将进一步得到加强,这可以显著改善科学、技术、工程和数学(STEM)学科和劳动力的多样性。技术摘要:该项目的目标是从根本上研究并随后开创一种基于蒸汽分子偶极矩检测的完全不同的石墨烯传感机制。与现有的使用直流(DC)信号的纳米电子传感器相比,这种方法利用石墨烯晶体管作为高频混频器,表面吸收分子作为静电栅极。分子偶极子由交流驱动电压激发;振荡偶极子反过来在石墨烯晶体管上产生交流电导调制,这可以通过测量混合电流来检测。通过进入更高的频率,当交流场开关超过界面状态的缓慢动态时,可以克服传统纳米电子传感器中缓慢的传感响应,从而使传感速度提高2-3个数量级(~0.1 s),灵敏度提高10倍(~1 pg)。具体工作包括:1)高频石墨烯纳米电子传感机理的基础研究;2)石墨烯蒸汽传感器的设计、制造、表征和优化;3)石墨烯蒸气传感器与微气相色谱(micro-GC)装置的片上集成。该项目将在纳米尺度上对分子在高频激发下的行为以及它们如何与石墨烯相互作用产生基本和详细的了解。此外,石墨烯蒸汽传感器阵列与片上微型气相色谱器件的集成将真正展示纳米电子传感器的优势,不仅具有高速度和高灵敏度,而且具有非破坏性和与片上制造/集成技术高度兼容的特点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhaohui Zhong其他文献

Electronically Guided Self Assembly within Quantum Corrals
量子畜栏内的电子引导自组装
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Cao;B. Miao;Zhaohui Zhong;Liang Sun;Biao You;Wei Zhang;Di Wu;A. Hu;Samuel D. Bader;Haifeng Ding
  • 通讯作者:
    Haifeng Ding
Circulating endothelial progenitor cells and erectile dysfunction: possibility of nutritional intervention?
循环内皮祖细胞和勃起功能障碍:营养干预的可能性?
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Ichim;Zhaohui Zhong;N. Mikirova;James A. Jackson;R. Hunninghake;Eduardo Mansilla;Gustavo H. Marín;Luis Nunez;Amit N. Patel;Niren Angle;Michael P Murphy;C. Dasanu;D. Alexandrescu;V. Bogin;N. Riordan
  • 通讯作者:
    N. Riordan
The Improvement of CRISPR-Cas9 System With Ubiquitin-Associated Domain Fusion for Efficient Plant Genome Editing
通过泛素相关域融合改进 CRISPR-Cas9 系统,实现高效植物基因组编辑
  • DOI:
    10.3389/fpls.2020.00621
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Xuelian Zheng;Caiyan Qi;Lijia Yang;Quan;Binglin Liu;Zhaohui Zhong;Xu Tang;Tingting Fan;Jianping Zhou;Yong Zhang
  • 通讯作者:
    Yong Zhang
Structural variation in the GH1 promoter regulates the hull color of rice
  • DOI:
    10.1007/s11032-025-01569-x
  • 发表时间:
    2025-05-29
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Chengxing Du;Hao Wang;Guangrong Zhong;Xilan Yan;Kehan Di;Longkang Li;Senhai Zhang;Nangu Yang;Yangkai Wang;Weilan Chen;Hua Yuan;Bin Tu;Jiawei Xiong;Zhaohui Zhong;Yuping Wang;Shigui Li;Peng Qin;Bingtian Ma
  • 通讯作者:
    Bingtian Ma
Reversible optical structuring of polymer waveguides doped with photochromic molecules
掺杂光致变色分子的聚合物波导的可逆光学结构
  • DOI:
    10.1063/1.1288598
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    4
  • 作者:
    St'ephane Lecomte;U. Gubler;G. Montemezzani;Lilian Lilian Teresa Bucken Gobbi;F. Diederich;Jennifer L. Kunde;B. Baumann;Stephan Arlt;Francois Morier;Uwe Siegner;Uwe Keller;Zhaoning Yu;P. Deshpande;Wei Wu;Jian Wang;Stephen Y. Chou;E. Franke;C. Trimble;Mathias Schubert;J. Woollam;J. Hale;Yu Tao;E. Balasubramaniam;Adrien Danel;Piotr Tomasik;Yang Yang;Shun;Ichiro Shoji;S. Kurimura;Yoichi Sato;Takunori Taira;A. Ikesue;Kunio Yoshida;E. Silvestre;J. Pottage;John Russell;P. J. W. Roberts;A. Gedanken;R. A. Reisfeld;L. Sominski;Zhaohui Zhong;G´erard Panczer;M. Gaft;Harry B. Minti
  • 通讯作者:
    Harry B. Minti

Zhaohui Zhong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhaohui Zhong', 18)}}的其他基金

Exploring lateral photo-Dember effect in two dimensional atomic layer crystals for terahertz generation
探索二维原子层晶体中的横向光登伯效应以产生太赫兹
  • 批准号:
    1509354
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CAREER: Graphene Heterostructures Based Hot Carrier Optoelectronics
职业:基于石墨烯异质结构的热载流子光电器件
  • 批准号:
    1254468
  • 财政年份:
    2013
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

基于MXene-Graphene异构界面相互作用的太赫兹超宽带调制机理研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
MoS2-graphene二维亚纳米通道膜构筑及溶剂传质与筛分机制研究
  • 批准号:
    22378132
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于MXene-Graphene异构界面相互作用的太赫兹超宽带调制机理研究
  • 批准号:
    62375044
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
转角In2Se3/Graphene异质结的界面调控及电子性质研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
g-C3N4/Graphene二维异质结光电阴极保护材料的构筑及应变调控光电效率研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
ZnO/Graphene复合量子点的表面特性调控、吸附作用及抗菌性能增强机制
  • 批准号:
    51802185
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
三维多孔KCu7S4@C/graphene复合材料的可控制备及其储能性质的研究
  • 批准号:
    21805247
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
超细晶graphene/Cu材料累积叠轧过程中组织演变机制和强化机制
  • 批准号:
    51701174
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
三维多孔SnS@C/graphene复合材料可控制备与储钠性能研究
  • 批准号:
    51604122
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
New Strategy for Synthesis of Atomically Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
  • 批准号:
    2403736
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
New low-cost graphene production to revolutionise engineering applications
新型低成本石墨烯生产将彻底改变工程应用
  • 批准号:
    2911021
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Studentship
STTR Phase I: High-Sensitivity Flexible Quantum Dots/Graphene X-Ray Detectors and Imaging Systems
STTR 第一阶段:高灵敏度柔性量子点/石墨烯 X 射线探测器和成像系统
  • 批准号:
    2322053
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Super selective hydrogen permeation through mixed proton and electron conducting asymmetric graphene based membrane
通过混合质子和电子传导不对称石墨烯基膜的超选择性氢渗透
  • 批准号:
    24K17588
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Revolutionizing Spacecraft Thermal Control with Dynamic Graphene Radiators: SmartSat
利用动态石墨烯散热器彻底改变航天器热控制:SmartSat
  • 批准号:
    10098641
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    EU-Funded
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
  • 批准号:
    EP/Y003152/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
CAREER: Manufacturing of Continuous Network Graphene-Copper Composites for Ultrahigh Electrical Conductivity
职业:制造具有超高导电性的连续网络石墨烯-铜复合材料
  • 批准号:
    2338609
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Enhancing gamete cryoprotective properties of graphene oxide by dual functionalization with antioxidants and non-penetrating cryoprotectant molecules
通过抗氧化剂和非渗透性冷冻保护剂分子的双重功能化增强氧化石墨烯的配子冷冻保护特性
  • 批准号:
    24K18002
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Design of graphene for tailored functionalities: a novel mathematical approach
定制功能的石墨烯设计:一种新颖的数学方法
  • 批准号:
    24K06797
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了