The Geometry, Topology and Number Theory of the Jones Polynomial
琼斯多项式的几何、拓扑和数论
基本信息
- 批准号:1406419
- 负责人:
- 金额:$ 37.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Knot theory is the study of 3-dimensional shapes obtained by removing loops from the 3-dimensional space. Microscopic examples of knotted loops appear abundantly in solid state physics, biology (notably, the DNA molecule) and various models of quantum computing. Macroscopic knotted loops occur in the shapes of galaxies, black holes and plasma physics. The proposed research focuses on the theoretical aspects of knot theory and more precisely on the relation between classical and quantum knot invariants. Quantum topology offers a classification of knots by various measures of complexity, for example by using the Jones polynomial of a knot (and its parallels). Understanding this filtering leads to deep connections between knot theory and hyperbolic geometry, number theory, complex analysis, algebraic geometry and mathematical physics. An important aspect of this research is the training of graduate students and the collaboration with senior researchers. The research involves difficult numerical experiments and leads to unexpected discoveries of conjectures and proofs. Aside from mathematics and mathematical physics, quantum knot theory is a powerful and effective tool with the potential to impact topological quantum computation and the study of the shape of long molecules.Classical knot invariants include the incompressible and normal surface invariants by W. Haken, the character varieties of algebraic geometry and mathematical physics and the hyperbolic geometry approach to 3-dimensional manifolds initiated by W. Thurston. The birth of quantum topology was the Jones polynomial in the mid eighties. The discovery of the Jones polynomial attracted mathematicians and physicists of the highest caliber, including the Fields Medalists V. Jones, E. Witten, V. Drinfeld and M. Kontsevich. There are precise, numerically testable conjectures that relate classical and quantum invariants. Progress on these conjectures (which include the Volume Conjecture of Kashaev, the Slope Conjecture and the AJ Conjecture) is the focus of the proposed research. A combination of numerical experimentation with proofs leads to deep connections between low dimensional topology and hyperbolic geometry, number theory, complex analysis, algebraic geometry and mathematical physics. This combination helps to train young researchers, and to make connections with senior researchers in diverse fields.
纽结理论是研究通过从三维空间中移除环而获得的三维形状。打结环的微观例子在固态物理学、生物学(特别是DNA分子)和各种量子计算模型中大量出现。宏观打结环出现在星系、黑洞和等离子体物理学的形状中。拟议的研究集中在结理论的理论方面,更确切地说,在经典和量子结不变量之间的关系。量子拓扑学通过各种复杂性度量提供了一种对结的分类,例如使用结(及其平行物)的琼斯多项式。理解这种过滤导致纽结理论和双曲几何,数论,复分析,代数几何和数学物理之间的深刻联系。这项研究的一个重要方面是研究生的培养和与高级研究人员的合作。这项研究涉及困难的数值实验,并导致意想不到的发现和证明。除了数学和数学物理之外,量子纽结理论是一个强大而有效的工具,有可能影响拓扑量子计算和长分子形状的研究。Haken,代数几何和数学物理的特征簇以及由W。瑟斯顿量子拓扑学的诞生是80年代中期的琼斯多项式。琼斯多项式的发现吸引了最高水平的数学家和物理学家,包括菲尔兹奖获得者V。维滕、V.德林菲尔德和M.孔采维奇有精确的,数值上可检验的关系,经典和量子不变量。这些猜想(包括Kashaev体积猜想、斜率猜想和AJ猜想)的进展是本文研究的重点。数值实验与证明的结合导致低维拓扑与双曲几何、数论、复分析、代数几何和数学物理之间的深刻联系。这种结合有助于培养年轻的研究人员,并与不同领域的高级研究人员建立联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stavros Garoufalidis其他文献
A Quantum trace map for 3-manifolds
3 流形的量子迹图
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Stavros Garoufalidis;Tao Yu - 通讯作者:
Tao Yu
The Århus integral of rational homology 3-spheres II: Invariance and universality
有理同调 3 域的 Århus 积分 II:不变性和普遍性
- DOI:
10.1007/s00029-002-8109-z - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
D. Bar;Stavros Garoufalidis;L. Rozansky;Dylan Thurston - 通讯作者:
Dylan Thurston
DIFFERENCE AND DIFFERENTIAL EQUATIONS FOR THE COLORED JONES FUNCTION
有色琼斯函数的差分和微分方程
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Stavros Garoufalidis - 通讯作者:
Stavros Garoufalidis
Perturbative invariants of cusped hyperbolic 3-manifolds
尖点双曲 3 流形的微扰不变量
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Stavros Garoufalidis;Matthias Storzer;Campbell Wheeler - 通讯作者:
Campbell Wheeler
The sl3 Jones polynomial of the trefoil: A case study of q-holonomic sequences
三叶草的 sl3 琼斯多项式:q 完整序列的案例研究
- DOI:
10.1016/j.aam.2011.04.001 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Stavros Garoufalidis;Christoph Koutschan - 通讯作者:
Christoph Koutschan
Stavros Garoufalidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stavros Garoufalidis', 18)}}的其他基金
Quantum Topology and Hyperbolic Geometry
量子拓扑和双曲几何
- 批准号:
1251399 - 财政年份:2013
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
Spring School in Geometry and Quantum Topology
几何与量子拓扑春季学校
- 批准号:
1106739 - 财政年份:2011
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
The Geometry, Topology, Asymptotics and Number Theory of the Jones Polynomial
琼斯多项式的几何、拓扑、渐近和数论
- 批准号:
1105678 - 财政年份:2011
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
The Geometry, Topology and Asymptotics of the Jones Polynomial
琼斯多项式的几何、拓扑和渐近
- 批准号:
0805078 - 财政年份:2008
- 资助金额:
$ 37.71万 - 项目类别:
Continuing Grant
The Geometry and Topology of the Jones Polynomial
琼斯多项式的几何和拓扑
- 批准号:
0505445 - 财政年份:2005
- 资助金额:
$ 37.71万 - 项目类别:
Continuing Grant
Chern-Simons Theory, and Its Limiting Geometry and Topology
陈-西蒙斯理论及其极限几何和拓扑
- 批准号:
0203129 - 财政年份:2002
- 资助金额:
$ 37.71万 - 项目类别:
Continuing Grant
Invariants of Knots and 3-Manifolds
结和 3 流形的不变量
- 批准号:
0096170 - 财政年份:2000
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
Invariants of Knots and 3-Manifolds
结和 3 流形的不变量
- 批准号:
9800703 - 财政年份:1998
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
相似海外基金
Interactions between geometry, topology, number theory, and dynamics
几何、拓扑、数论和动力学之间的相互作用
- 批准号:
2303572 - 财政年份:2023
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2022
- 资助金额:
$ 37.71万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Higher Depth in Representation Theory, Number Theory, and Quantum Topology
更深入的表示论、数论和量子拓扑
- 批准号:
2101844 - 财政年份:2021
- 资助金额:
$ 37.71万 - 项目类别:
Continuing Grant
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2021
- 资助金额:
$ 37.71万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Topology of thermocapillary-driven convection and induced coherent structures by low-Stokes-number particles in closed system with free surface
自由表面封闭系统中热毛细管驱动对流和低斯托克斯数粒子诱导相干结构的拓扑
- 批准号:
20K20977 - 财政年份:2020
- 资助金额:
$ 37.71万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Integer valued polynomials in topology and number theory
拓扑和数论中的整数值多项式
- 批准号:
8829-2011 - 财政年份:2015
- 资助金额:
$ 37.71万 - 项目类别:
Discovery Grants Program - Individual
Stability Phenomena in Number Theory, Algebraic Geometry, and Topology
数论、代数几何和拓扑中的稳定性现象
- 批准号:
1402620 - 财政年份:2014
- 资助金额:
$ 37.71万 - 项目类别:
Continuing Grant
Integer valued polynomials in topology and number theory
拓扑和数论中的整数值多项式
- 批准号:
8829-2011 - 财政年份:2014
- 资助金额:
$ 37.71万 - 项目类别:
Discovery Grants Program - Individual
Integer valued polynomials in topology and number theory
拓扑和数论中的整数值多项式
- 批准号:
8829-2011 - 财政年份:2013
- 资助金额:
$ 37.71万 - 项目类别:
Discovery Grants Program - Individual
Away from Independence: Probability in Geometry, Topology, Number Theory and Mathematical Physics
远离独立:几何、拓扑、数论和数学物理中的概率
- 批准号:
1308725 - 财政年份:2013
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant