US-Ireland Collaborative Research on Nanostructured Gallium Nitride (GaN) Power Semiconductor Devices

美国-爱尔兰合作研究纳米结构氮化镓 (GaN) 功率半导体器件

基本信息

  • 批准号:
    1407540
  • 负责人:
  • 金额:
    $ 42.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

The world is facing serious challenges in conserving energy resources and reducing carbon emissions as demand for energy consumption expands. The demand for electricity is expected to increase significantly with further electrification of our world driven by renewable energy usage, electrification of transportation, expansion of efficient electrical heating and cooling, expansion of information traffic, increased industrial motor usage, and new smart grid development. Advanced wide bandgap (WBG) semiconductor power electronics will play a critical role in all phases of the electricity life cycle including generation, distribution and consumption, and have the potential to improve electricity efficiency by 10-25%. Gallium Nitride (GaN) power devices offer a high performance solution in electric vehicles, motor drives, grid-tied renewable inverters, ultra-compact power supplies, and many other energy conversion systems. However, material defects in today's fabrication processes prevent full realization of this potential. This international collaboration project between the US, Republic of Ireland and Northern Ireland investigators will address the fundamental challenges on GaN material defects, reliability, and cost, and potentially has a large impact to the WBG power electronics industry. The objective of the project is to explore high voltage vertical device architectures based on GaN nanowires, and advance the fundamental understanding of materials growth and defect mechanisms, electrical breakdown and transport properties to establish a viable nanotechnology building block for power electronics applications. The approach is to model, fabricate, and characterize high voltage Schottky barrier diodes, merged PiN Schottky diodes, and gate-all-around field effect transistors on nano-GaN materials grown with selective area metalorganic vapor phase epitaxy (MOVPE) on silicon substrates. The US-Ireland collaborative research project combines the MOVPE growth and nanofabrication capabilities at Tyndall National Institute in Ireland, the material analysis capabilities at Queen's University Belfast in Northern Ireland with the device modeling, design, and testing expertise at Illinois Institute of Technology. The intellectual merit of this research is to open up a new direction in reducing or eliminating dislocations and improving reliability of wide WBG power semiconductors, leading to novel high voltage GaN device architectures on a silicon platform. This is distinctly different from the mainstream lateral GaN device architectures based on heteroexpitaxial thin-films. The project will address fundamental and applied research related to nano- and micro-scale device design and modeling, nanoheteroexpitaxial materials growth and characterization, and device fabrication. It will advance the basic understanding of one-dimensional semiconductor epitaxial growth kinetics and the effects of facet surface states on carrier transport and device breakdown properties.
随着能源消费需求的扩大,世界面临着节约能源和减少碳排放的严峻挑战。随着可再生能源的使用、交通运输的电气化、高效电加热和冷却的扩展、信息流量的扩展、工业电机使用的增加以及新的智能电网的发展,电力需求预计将显著增加。先进的宽带隙(WBG)半导体电力电子技术将在电力生命周期的各个阶段发挥关键作用,包括发电、配电和消费,并有可能将电力效率提高10- 25%。氮化镓(GaN)功率器件为电动汽车、电机驱动器、并网可再生逆变器、超紧凑型电源和许多其他能源转换系统提供了高性能解决方案。然而,当今制造工艺中的材料缺陷阻碍了这种潜力的充分实现。美国、爱尔兰共和国和北方尔兰爱尔兰研究人员之间的这一国际合作项目将解决GaN材料缺陷、可靠性和成本方面的根本挑战,并可能对WBG电力电子行业产生重大影响。该项目的目标是探索基于GaN纳米线的高压垂直器件架构,并推进对材料生长和缺陷机制,电击穿和传输特性的基本理解,为电力电子应用建立可行的纳米技术构建模块。该方法是模型,制造和表征高电压肖特基势垒二极管,合并的PiN肖特基二极管,和栅极全包围场效应晶体管的纳米GaN材料生长的硅衬底上的选择性区域金属有机气相外延(MOVPE)。美国-爱尔兰合作研究项目结合了爱尔兰廷德尔国家研究所的MOVPE生长和纳米纤维能力,北方尔兰爱尔兰贝尔法斯特女王大学的材料分析能力,以及伊利诺伊理工学院的设备建模,设计和测试专业知识。这项研究的智力价值是在减少或消除位错和提高宽WBG功率半导体的可靠性方面开辟了一个新的方向,从而在硅平台上实现新型高压GaN器件架构。这与基于异质外延薄膜的主流横向GaN器件架构明显不同。该项目将涉及与纳米和微米尺度器件设计和建模,纳米异质外延材料生长和表征以及器件制造相关的基础和应用研究。它将促进对一维半导体外延生长动力学的基本理解,以及小面表面态对载流子输运和器件击穿特性的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zheng Shen其他文献

Achievement of frequency-controlled wide-angle beam scanning antenna with metasurface at 0.3 THz
0.3 THz频率控制超表面广角波束扫描天线的实现
  • DOI:
    10.1049/el.2018.5520
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Zheng Shen;Li Chao;Zhang Xiaojuan;Fang Guangyou
  • 通讯作者:
    Fang Guangyou
Safe Execution of Learned Orientation Skills with Conic Control Barrier Functions
通过圆锥控制屏障功能安全执行所学定向技能
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zheng Shen;Matteo Saveriano;Fares J. Abu;Sami Haddadin
  • 通讯作者:
    Sami Haddadin
Sex Reversal Syndrome With 47, XYY Karyotype: Case Report and Literature Review
47、XYY 核型性别反转综合症:病例报告及文献综述
  • DOI:
    10.1097/ten.0b013e3181dee6b6
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Zou;Zheng Shen;Xian Chen;L. Liang;Zhengyan Zhao
  • 通讯作者:
    Zhengyan Zhao
On multi-valued Ns and Ts in number concord and agreement∗
关于数字一致性和一致性的多值 Ns 和 Ts
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zheng Shen
  • 通讯作者:
    Zheng Shen
Doping-induced Structural Transformations in Maghemite for Enhanced emOrtho-Para/em Hydrogen Conversion
掺杂诱导磁赤铁矿的结构转变以增强正-仲氢转化
  • DOI:
    10.1016/j.cattod.2025.115243
  • 发表时间:
    2025-05-15
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Jiuyi Wang;Caizhen Yue;Jian zhao;Xiong Zhang;Shifu Wang;Zheng Shen;Nan Yin;Xiaofeng Yang;Guodong Liu;Xuning Li;Yanqiang Huang;Tao Zhang
  • 通讯作者:
    Tao Zhang

Zheng Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zheng Shen', 18)}}的其他基金

Scalable Multilevel Multicell Power Architectures Leveraging Cost Effective GaN Power IC Technology
利用具有成本效益的 GaN 功率 IC 技术的可扩展多级多单元电源架构
  • 批准号:
    1711485
  • 财政年份:
    2017
  • 资助金额:
    $ 42.76万
  • 项目类别:
    Standard Grant
CAREER: Super Junction Power Semiconductor Devices
职业:超级结功率半导体器件
  • 批准号:
    0454835
  • 财政年份:
    2004
  • 资助金额:
    $ 42.76万
  • 项目类别:
    Standard Grant
CAREER: Super Junction Power Semiconductor Devices
职业:超级结功率半导体器件
  • 批准号:
    0237420
  • 财政年份:
    2003
  • 资助金额:
    $ 42.76万
  • 项目类别:
    Standard Grant
An Electromagnetic Compatibility Laboratory
电磁兼容实验室
  • 批准号:
    0126677
  • 财政年份:
    2002
  • 资助金额:
    $ 42.76万
  • 项目类别:
    Standard Grant

相似国自然基金

关于不对称去芳香化反应/Ireland-Claisen重排反应的研究:构筑手性吲哚啉衍生物
  • 批准号:
    22001177
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: US-Ireland R&D Partnership: Processing-Driven Nucleation Mediated Control for Manufacturing of Phase-Pure Ferroelectric Hafnia
合作研究:美国-爱尔兰 R
  • 批准号:
    2346484
  • 财政年份:
    2023
  • 资助金额:
    $ 42.76万
  • 项目类别:
    Standard Grant
Collaborative Research: US-Ireland R&D Partnership: Processing-Driven Nucleation Mediated Control for Manufacturing of Phase-Pure Ferroelectric Hafnia
合作研究:美国-爱尔兰 R
  • 批准号:
    2149480
  • 财政年份:
    2023
  • 资助金额:
    $ 42.76万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S.-Ireland R&D Partnership: CIF: AF: Small: Enabling Beyond-5G Wireless Access Networks with Robust and Scalable Cell-Free Massive MIMO
合作研究:美国-爱尔兰 R
  • 批准号:
    2322191
  • 财政年份:
    2023
  • 资助金额:
    $ 42.76万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S.-Ireland R&D Partnership: CIF: AF: Small: Enabling Beyond-5G Wireless Access Networks with Robust and Scalable Cell-Free Massive MIMO
合作研究:美国-爱尔兰 R
  • 批准号:
    2322190
  • 财政年份:
    2023
  • 资助金额:
    $ 42.76万
  • 项目类别:
    Standard Grant
Collaborative Research: US-Ireland R&D Partnership: Processing-Driven Nucleation Mediated Control for Manufacturing of Phase-Pure Ferroelectric Hafnia
合作研究:美国-爱尔兰 R
  • 批准号:
    2149487
  • 财政年份:
    2023
  • 资助金额:
    $ 42.76万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S.-Ireland R&D Partnership Antiferroelectricity, Ferrielectricity and Ferroelectricity in the Archetypal Antiferroelectric PbZrO3 at Small Scale
合作研究:美国-爱尔兰 R
  • 批准号:
    2219476
  • 财政年份:
    2022
  • 资助金额:
    $ 42.76万
  • 项目类别:
    Continuing Grant
Collaborative Research: U.S.-Ireland R&D Partnership: Full Atomistic Understanding of Solid-Liquid Interfaces via an Integrated Experiment-Theory Approach
合作研究:美国-爱尔兰 R
  • 批准号:
    2137147
  • 财政年份:
    2022
  • 资助金额:
    $ 42.76万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S.-Ireland R&D Partnership: Full Atomistic Understanding of Solid-Liquid Interfaces via an Integrated Experiment-Theory Approach
合作研究:美国-爱尔兰 R
  • 批准号:
    2137157
  • 财政年份:
    2022
  • 资助金额:
    $ 42.76万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S.-Ireland R&D Partnership Antiferroelectricity, Ferrielectricity and Ferroelectricity in the Archetypal Antiferroelectric PbZrO3 at Small Scale
合作研究:美国-爱尔兰 R
  • 批准号:
    2219477
  • 财政年份:
    2022
  • 资助金额:
    $ 42.76万
  • 项目类别:
    Continuing Grant
U.S.-Ireland R&D Partnership: Collaborative Research: CNS Core: Medium: A unified framework for the emulation of classical and quantum physical layer networks
美国-爱尔兰 R
  • 批准号:
    2247007
  • 财政年份:
    2022
  • 资助金额:
    $ 42.76万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了