Semiconductor Nanolasers Based on Integration with Silver
基于银集成的半导体纳米激光器
基本信息
- 批准号:1408302
- 负责人:
- 金额:$ 33.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: Semiconductor Nanolasers Based on Integration with Silver The past 55 years has witnessed unprecedented progress in humanity's ability to compute, enabling applications that were previously unimaginable. This has been achieved with the advent of the electronic integrated circuit, where electrical elements are built together on a single chip. Increasing computing power is accomplished through size "scaling", namely shrinking the size of each computing element to accommodate more elements on a single chip, enabling more complex functions to be performed in a given time. Humanity's ability to exchange information is undergoing a similar paradigm shift, due to the recent commercialization of the photonic integrated circuit, an analog of the electronic integrated circuit that encodes information on light, rather than electricity. The light carrying this information can then be transmitted over great distances using fiber optics. In these photonic integrated circuits, numerous components that produce and process light are integrated together in much the same way as their electronic integrated circuit counterparts; however, the fundamental minimum size of components is limited by the rather large length scale of light. As a result, many fewer components may be combined on a single chip because the size of each optical component is necessarily much larger than their electrical counterparts, limiting the capabilities of photonic integrated circuits. The approach here to surmount this challenge is to employ crystalline metals to confine light within components to much smaller dimensions than the wavelength of light. This would enable much smaller optical components and, hence, significantly more powerful photonic integrated circuits. The focus here will be on building extremely small lasers, which are the components that generate light in photonic integrated circuits. This work will provide cutting-edge research opportunities for two Ph.D. students, increase research opportunities for undergraduates from historically underrepresented groups, and help engage countless pre-K-12 students with the exciting world of nanoscience.Based upon current projections, subwavelength optical components will be required in the next ~10 years to continue the Moore's Law of InP-based photonic circuits progress. Current efforts that could address this challenge are focused mainly on heterogeneous integration of crystalline semiconductors with amorphous/polycrystalline metals, limiting their performance and/or the prospects for application to photonic integrated circuits. An orthogonal approach to this critical challenge is to employ monolithic integration of III-V active media with epitaxial silver to greatly reduce the optical losses that plague the broad field of metal-based nanophotonic devices. Recent progress in the growth of epitaxial silver has revealed that optical losses can be greatly reduced and plasmon propagation lengths significantly enhanced, enabling a solution to this fundamental limitation. While this effort concentrates on addressing the need for efficient subwavelength nanolaser sources, the approach is broadly applicable to the other active and passive devices required in photonic integrated circuits. This multifaceted investigation will couple the growth and device fabrication of epitaxial III-V/silver heterostructures to (1) realize high-performance, electrically-injected nanolasers that operate at room temperature and (2) illuminate and quantify novel methods to integrate silver and III-V active structures that dramatically enhance light-matter interactions at the nanoscale.
在过去的55年里,人类的计算能力取得了前所未有的进步,实现了以前无法想象的应用。这是随着电子集成电路的出现而实现的,在电子集成电路中,电子元件被构建在单个芯片上。提高计算能力是通过尺寸“缩放”来实现的,即缩小每个计算元件的尺寸,以便在单个芯片上容纳更多的元件,从而在给定的时间内执行更复杂的功能。由于最近光子集成电路的商业化,人类交换信息的能力正在经历类似的范式转变,光子集成电路是一种模拟电子集成电路,通过光而不是电来编码信息。携带这些信息的光可以通过光纤传输很远的距离。在这些光子集成电路中,产生和处理光的许多元件以与电子集成电路相当的方式集成在一起;然而,元件的基本最小尺寸受到相当大的光长度尺度的限制。结果,由于每个光学元件的尺寸必然比对应的电子元件大得多,限制了光子集成电路的能力,因此可以在单个芯片上组合的元件要少得多。克服这一挑战的方法是使用晶体金属将组件内的光限制在比光波长小得多的尺寸上。这将使光学元件更小,因此,更强大的光子集成电路。这里的重点将是建造极小的激光器,这是在光子集成电路中产生光的组件。这项工作将为两位博士生提供前沿的研究机会,为历史上代表性不足的群体的本科生增加研究机会,并帮助无数k -12前的学生参与纳米科学的激动人心的世界。根据目前的预测,亚波长光学元件将需要在未来10年继续发展基于inp的光子电路的摩尔定律。目前能够解决这一挑战的努力主要集中在晶体半导体与非晶/多晶金属的异质集成上,限制了它们的性能和/或应用于光子集成电路的前景。解决这一关键挑战的正交方法是采用III-V型有源介质与外延银的单片集成,以大大降低困扰金属基纳米光子器件广泛领域的光学损耗。最近在外延银生长方面的进展表明,光学损耗可以大大降低,等离子体传播长度可以显着增加,从而解决了这一基本限制。虽然这项工作集中在解决对高效亚波长纳米激光源的需求,但该方法广泛适用于光子集成电路中所需的其他有源和无源器件。这项多方面的研究将结合外延III-V/银异质结构的生长和器件制造,以(1)实现在室温下工作的高性能电注入纳米激光器;(2)阐明和量化集成银和III-V活性结构的新方法,这些新方法可以显着增强纳米尺度上的光-物质相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seth Bank其他文献
Anisotropic thermoelectric effect and field-effect devices in epitaxial bismuthene on Si (111)
Si 上外延铋的各向异性热电效应和场效应器件 (111)
- DOI:
10.1088/1361-6528/abaf1f - 发表时间:
2020-09 - 期刊:
- 影响因子:3.5
- 作者:
Wen Zhong;Yu Zhao;Beibei Zhu;Jingjie Sha;Emily S Walker;Seth Bank;Yunfei Chen;Deji Akinw;e;Li Tao - 通讯作者:
Li Tao
Seth Bank的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seth Bank', 18)}}的其他基金
Collaborative Research: Two-photon absorption engineering in laser diodes for ultrafast pulse generation
合作研究:用于超快脉冲生成的激光二极管中的双光子吸收工程
- 批准号:
2133187 - 财政年份:2021
- 资助金额:
$ 33.12万 - 项目类别:
Standard Grant
GOALI: BGaAs and BGaInAs Detectors Lattice-Matched to Silicon
GOALI:与硅晶格匹配的 BGaAs 和 BGaInAs 探测器
- 批准号:
1933836 - 财政年份:2019
- 资助金额:
$ 33.12万 - 项目类别:
Standard Grant
RAISE-TAQS: Photon-Number-Resolving Integrated Avalanche Photodiodes for Scalable Quantum Computing
RAISE-TAQS:用于可扩展量子计算的光子数解析集成雪崩光电二极管
- 批准号:
1839175 - 财政年份:2018
- 资助金额:
$ 33.12万 - 项目类别:
Standard Grant
EAGER: Lattice-matched direct-bandgap III-V photodetector materials to silicon
EAGER:与硅晶格匹配的直接带隙 III-V 光电探测器材料
- 批准号:
1838984 - 财政年份:2018
- 资助金额:
$ 33.12万 - 项目类别:
Standard Grant
73rd Device Research Conference (DRC); Ohio State University, Ohio.
第 73 届设备研究会议(DRC);
- 批准号:
1529219 - 财政年份:2015
- 资助金额:
$ 33.12万 - 项目类别:
Standard Grant
Collaborative Research: Study of Strain-Dependent Auger Recombination Processes in III-V Materials Using Membranes
合作研究:使用膜研究 III-V 族材料中应变相关的俄歇复合过程
- 批准号:
1508603 - 财政年份:2015
- 资助金额:
$ 33.12万 - 项目类别:
Continuing Grant
EAGER: Advanced Wireless Communication Concepts Applied to Optical Fibers
EAGER:先进无线通信概念应用于光纤
- 批准号:
1230034 - 财政年份:2012
- 资助金额:
$ 33.12万 - 项目类别:
Standard Grant
CAREER: High-Efficiency Mid-Infrared Diode Lasers Incorporating Novel Metallic Nanoparticle-Enhanced Tunnel Junctions
职业:采用新型金属纳米粒子增强隧道结的高效中红外二极管激光器
- 批准号:
0954732 - 财政年份:2010
- 资助金额:
$ 33.12万 - 项目类别:
Standard Grant
相似海外基金
Photonic crystal nanolasers and their applications
光子晶体纳米激光器及其应用
- 批准号:
19F19071 - 财政年份:2019
- 资助金额:
$ 33.12万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Optical and Quantum Coherence Study of 2D-Material Based Cavity-Enhanced Emitters and Nanolasers
基于二维材料的腔增强发射器和纳米激光器的光学和量子相干性研究
- 批准号:
410408989 - 财政年份:2019
- 资助金额:
$ 33.12万 - 项目类别:
Research Grants
Electrical Injection Nanolasers Based on 2D Monolayer Gain Material
基于二维单层增益材料的电注入纳米激光器
- 批准号:
1807644 - 财政年份:2018
- 资助金额:
$ 33.12万 - 项目类别:
Standard Grant
Ultra-Stable High-Performance Single Nanolasers
超稳定高性能单纳米激光器
- 批准号:
EP/P006361/1 - 财政年份:2017
- 资助金额:
$ 33.12万 - 项目类别:
Research Grant
Ultra-Stable High-Performance Nanolasers
超稳定高性能纳米激光器
- 批准号:
EP/P006027/1 - 财政年份:2017
- 资助金额:
$ 33.12万 - 项目类别:
Research Grant
On-chip plasmonic nanolasers for ultrafast optical interconnects
用于超快光学互连的片上等离子体纳米激光器
- 批准号:
17H03229 - 财政年份:2017
- 资助金额:
$ 33.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
High-Precision Laser Printing of Nanoparticle Metasurfaces for Light Control, Sensors, and Nanolasers
用于光控制、传感器和纳米激光器的纳米粒子超表面的高精度激光打印
- 批准号:
317867676 - 财政年份:2016
- 资助金额:
$ 33.12万 - 项目类别:
Research Grants
Electrically Pumped complementary-metal-oxide-semiconductor (CMOS)-compatible two-dimensional transition metal dichalcogenide materials nanolasers
电泵浦互补金属氧化物半导体(CMOS)兼容的二维过渡金属二硫属化物材料纳米激光器
- 批准号:
1508856 - 财政年份:2015
- 资助金额:
$ 33.12万 - 项目类别:
Standard Grant
Light confinement and nanolasers using metal-dielectric nanostructures
使用金属电介质纳米结构的光限制和纳米激光器
- 批准号:
22760512 - 财政年份:2010
- 资助金额:
$ 33.12万 - 项目类别:
Grant-in-Aid for Young Scientists (B)