RAISE-TAQS: Photon-Number-Resolving Integrated Avalanche Photodiodes for Scalable Quantum Computing
RAISE-TAQS:用于可扩展量子计算的光子数解析集成雪崩光电二极管
基本信息
- 批准号:1839175
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical description: Quantum computing and quantum communications are emerging fields that harness fundamentally quantum mechanical properties to process and exchange information. They offer transformative potential for applications ranging from solving important classes of problems faster than traditional digital computers, such as integer factorization and simulating complex quantum mechanical systems, to creating secure communications channels that cannot be hacked. Any quantum computer or quantum communication network that uses light must have the ability to count the number of photons in order to correct computation or transmission errors; specifically, a receiver is required to detect and transduce the photons into an electrical signal that is proportional to the exact number of photons that reaches the receiver at any given moment. This project aims to demonstrate such a receiver and harnesses this capability to perform measurements that are of both fundamental scientific and practical importance for future quantum computing and quantum communications systems. This research resonates strongly across several disciplines, ranging from fundamental materials science, to basic physics, through engineering. It provides unique interdisciplinary research opportunities for graduate, undergraduate, and high school students. A key educational goal is to prepare students for the cross-disciplinary challenges they may face as quantum technology intersects engineering via a broadly accessible, self-contained course in "quantum engineering" simultaneously at UT-Austin and UVA, with all course materials and recorded lectures freely available to the general public. The project also integrates research with outreach activities, such as inspiring pre-K-12 students through classroom visits, public lectures, and collaborative exhibits/tours with local museums.Technical description: Quantum photonics is a key quantum technology. A critical element for quantum photonics is the photon-number-resolving photodetector, which produces a signal proportional to the number of incident photons, enabling full access to the corpuscular nature of quantum electromagnetic fields. The latter is key to high photon flux applications in quantum information, such as quantum repeaters in quantum communication, entanglement distillation, quantum error correction, and fault tolerant universal quantum computing over continuous variables using squeezed states. A number of device technologies offer photon number resolution, but typically operate at reduced temperatures, often requiring a large cooling apparatus and large arrays for modest number resolution. This project investigates a novel approach to this challenge, where a single photon avalanche photodiode (SPAD) is decomposed into several waveguide-coupled "nanoSPAD" segments, each detecting at most one photon via individual readout. The goal is photon number resolution at room temperature, with the potential to cover wavelengths from the visible to mid-infrared at high bandwidths - a combination that is essential, yet inaccessible with any existing technology. With design grounded in a fully quantum model and enabled by a new class of low noise III-V avalanche photodetector materials, this structure offers the potential for photon number resolution with high positive-operator-valued measurement purity. The nanoSPADs are integrated monolithically onto InP, the platform of modern long-haul telecommunications. The litmus test of the capabilities of the photon number resolving nanoSPAD is the demonstration of quantum state tomography and Fock-state filtering in real time. The quantum tomography protocol is, in turn, used to characterize the photon number resolution. Beyond enabling these quantum tomography experiments, it is expected that the nanoSPAD will accelerate new scientific breakthroughs in quantum photonics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:量子计算和量子通信是新兴领域,它们从根本上利用量子力学特性来处理和交换信息。从比传统数字计算机更快地解决重要问题(如整数分解和模拟复杂的量子力学系统),到创建无法被黑客入侵的安全通信通道,它们为各种应用提供了变革潜力。任何使用光的量子计算机或量子通信网络都必须具有计算光子数量的能力,以便纠正计算或传输错误;具体来说,接收器需要检测并将光子转换成电信号,该电信号与在任何给定时刻到达接收器的光子的确切数量成正比。该项目旨在展示这样一个接收器,并利用这种能力来执行对未来量子计算和量子通信系统具有基础科学和实际重要性的测量。这项研究在几个学科之间产生了强烈的共鸣,从基础材料科学到基础物理学,再到工程学。它为研究生、本科生和高中生提供了独特的跨学科研究机会。一个关键的教育目标是通过在UT-Austin和UVA同时提供的广泛可访问的“量子工程”课程,让学生为他们可能面临的跨学科挑战做好准备,所有课程材料和录制的讲座都免费提供给公众。该项目还将研究与外展活动相结合,例如通过课堂参观、公开讲座和与当地博物馆的合作展览/参观来激励k -12前的学生。技术描述:量子光子学是一门关键的量子技术。量子光子学的一个关键元件是光子数分辨光电探测器,它产生与入射光子数量成正比的信号,从而可以完全访问量子电磁场的微粒性质。后者是量子信息中高光子通量应用的关键,例如量子通信中的量子中继器,纠缠蒸馏,量子纠错和使用压缩态的连续变量的容错通用量子计算。许多器件技术提供光子数分辨率,但通常在较低的温度下工作,通常需要大型冷却设备和大型阵列来实现适度的光子数分辨率。该项目研究了一种解决这一挑战的新方法,将单光子雪崩光电二极管(SPAD)分解为几个波导耦合的“纳米ospad”部分,每个部分通过单独的读出最多检测一个光子。目标是在室温下的光子数分辨率,并有可能在高带宽下覆盖从可见光到中红外的波长——这是一个必不可少的组合,但任何现有技术都无法实现。基于全量子模型的设计和新型低噪声III-V雪崩光电探测器材料,该结构提供了具有高正算符值测量纯度的光子数分辨率的潜力。纳米ospad单片集成到InP,现代长途电信平台。实时量子态层析成像和fock态滤波是检验纳米ospad分辨光子数能力的试金石。量子层析成像协议,反过来,用于表征光子数分辨率。除了实现这些量子层析成像实验之外,预计纳米ospad将加速量子光子学的新科学突破。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Review of lateral epitaxial overgrowth of buried dielectric structures for electronics and photonics
- DOI:10.1016/j.pquantelec.2021.100316
- 发表时间:2021-02
- 期刊:
- 影响因子:11.7
- 作者:D. Ironside;A. M. Skipper;Ashlee M. García;S. Bank
- 通讯作者:D. Ironside;A. M. Skipper;Ashlee M. García;S. Bank
Generalized overlap quantum state tomography1
广义重叠量子态断层扫描1
- DOI:10.1103/physrevresearch.2.042002
- 发表时间:2020
- 期刊:
- 影响因子:4.2
- 作者:Nehra, Rajveer;Eaton, Miller;González-Arciniegas, Carlos;Kim, M. S.;Gerrits, Thomas;Lita, Adriana;Nam, Sae Woo;Pfister, Olivier
- 通讯作者:Pfister, Olivier
Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits
- DOI:10.1038/s41566-020-0647-4
- 发表时间:2020-06-22
- 期刊:
- 影响因子:35
- 作者:Maiti, R.;Patil, C.;Sorger, V. J.
- 通讯作者:Sorger, V. J.
Photon-number-resolving segmented detectors based on single-photon avalanche-photodiodes
基于单光子雪崩光电二极管的光子数分辨分段探测器
- DOI:10.1364/oe.380416
- 发表时间:2020
- 期刊:
- 影响因子:3.8
- 作者:Nehra, Rajveer;Chang, Chun-Hung;Yu, Qianhuan;Beling, Andreas;Pfister, Olivier
- 通讯作者:Pfister, Olivier
Classical to Quantum Transitions in Multilayer Plasmonic Metamaterials
多层等离子体超材料中的经典到量子跃迁
- DOI:10.1364/cleo_qels.2019.fth4m.5
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Simmons, E.;Li, K.;Briggs, A.F.;Bank, S.R.;Wasserman, D.;Narimanov, E.;Podolskiy, V.A
- 通讯作者:Podolskiy, V.A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seth Bank其他文献
Anisotropic thermoelectric effect and field-effect devices in epitaxial bismuthene on Si (111)
Si 上外延铋的各向异性热电效应和场效应器件 (111)
- DOI:
10.1088/1361-6528/abaf1f - 发表时间:
2020-09 - 期刊:
- 影响因子:3.5
- 作者:
Wen Zhong;Yu Zhao;Beibei Zhu;Jingjie Sha;Emily S Walker;Seth Bank;Yunfei Chen;Deji Akinw;e;Li Tao - 通讯作者:
Li Tao
Seth Bank的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seth Bank', 18)}}的其他基金
Collaborative Research: Two-photon absorption engineering in laser diodes for ultrafast pulse generation
合作研究:用于超快脉冲生成的激光二极管中的双光子吸收工程
- 批准号:
2133187 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
GOALI: BGaAs and BGaInAs Detectors Lattice-Matched to Silicon
GOALI:与硅晶格匹配的 BGaAs 和 BGaInAs 探测器
- 批准号:
1933836 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
EAGER: Lattice-matched direct-bandgap III-V photodetector materials to silicon
EAGER:与硅晶格匹配的直接带隙 III-V 光电探测器材料
- 批准号:
1838984 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
73rd Device Research Conference (DRC); Ohio State University, Ohio.
第 73 届设备研究会议(DRC);
- 批准号:
1529219 - 财政年份:2015
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Study of Strain-Dependent Auger Recombination Processes in III-V Materials Using Membranes
合作研究:使用膜研究 III-V 族材料中应变相关的俄歇复合过程
- 批准号:
1508603 - 财政年份:2015
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Semiconductor Nanolasers Based on Integration with Silver
基于银集成的半导体纳米激光器
- 批准号:
1408302 - 财政年份:2014
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
EAGER: Advanced Wireless Communication Concepts Applied to Optical Fibers
EAGER:先进无线通信概念应用于光纤
- 批准号:
1230034 - 财政年份:2012
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: High-Efficiency Mid-Infrared Diode Lasers Incorporating Novel Metallic Nanoparticle-Enhanced Tunnel Junctions
职业:采用新型金属纳米粒子增强隧道结的高效中红外二极管激光器
- 批准号:
0954732 - 财政年份:2010
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
- 批准号:
2326810 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
- 批准号:
2326748 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant