RAISE-TAQS: Photon-Number-Resolving Integrated Avalanche Photodiodes for Scalable Quantum Computing
RAISE-TAQS:用于可扩展量子计算的光子数解析集成雪崩光电二极管
基本信息
- 批准号:1839175
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical description: Quantum computing and quantum communications are emerging fields that harness fundamentally quantum mechanical properties to process and exchange information. They offer transformative potential for applications ranging from solving important classes of problems faster than traditional digital computers, such as integer factorization and simulating complex quantum mechanical systems, to creating secure communications channels that cannot be hacked. Any quantum computer or quantum communication network that uses light must have the ability to count the number of photons in order to correct computation or transmission errors; specifically, a receiver is required to detect and transduce the photons into an electrical signal that is proportional to the exact number of photons that reaches the receiver at any given moment. This project aims to demonstrate such a receiver and harnesses this capability to perform measurements that are of both fundamental scientific and practical importance for future quantum computing and quantum communications systems. This research resonates strongly across several disciplines, ranging from fundamental materials science, to basic physics, through engineering. It provides unique interdisciplinary research opportunities for graduate, undergraduate, and high school students. A key educational goal is to prepare students for the cross-disciplinary challenges they may face as quantum technology intersects engineering via a broadly accessible, self-contained course in "quantum engineering" simultaneously at UT-Austin and UVA, with all course materials and recorded lectures freely available to the general public. The project also integrates research with outreach activities, such as inspiring pre-K-12 students through classroom visits, public lectures, and collaborative exhibits/tours with local museums.Technical description: Quantum photonics is a key quantum technology. A critical element for quantum photonics is the photon-number-resolving photodetector, which produces a signal proportional to the number of incident photons, enabling full access to the corpuscular nature of quantum electromagnetic fields. The latter is key to high photon flux applications in quantum information, such as quantum repeaters in quantum communication, entanglement distillation, quantum error correction, and fault tolerant universal quantum computing over continuous variables using squeezed states. A number of device technologies offer photon number resolution, but typically operate at reduced temperatures, often requiring a large cooling apparatus and large arrays for modest number resolution. This project investigates a novel approach to this challenge, where a single photon avalanche photodiode (SPAD) is decomposed into several waveguide-coupled "nanoSPAD" segments, each detecting at most one photon via individual readout. The goal is photon number resolution at room temperature, with the potential to cover wavelengths from the visible to mid-infrared at high bandwidths - a combination that is essential, yet inaccessible with any existing technology. With design grounded in a fully quantum model and enabled by a new class of low noise III-V avalanche photodetector materials, this structure offers the potential for photon number resolution with high positive-operator-valued measurement purity. The nanoSPADs are integrated monolithically onto InP, the platform of modern long-haul telecommunications. The litmus test of the capabilities of the photon number resolving nanoSPAD is the demonstration of quantum state tomography and Fock-state filtering in real time. The quantum tomography protocol is, in turn, used to characterize the photon number resolution. Beyond enabling these quantum tomography experiments, it is expected that the nanoSPAD will accelerate new scientific breakthroughs in quantum photonics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:量子计算和量子通信是利用从根本上利用量子机械性能来处理和交换信息的新兴领域。它们为应用程序提供了变革性的潜力,从与传统数字计算机(例如整数分解和模拟复杂的量子机械系统)等传统数字计算机更快地解决重要类别的问题,到创建无法黑客入侵的安全通信渠道。任何使用光的量子计算机或量子通信网络都必须具有计算光子数量以纠正计算或传输错误的能力;具体而言,需要接收器来检测并将光子转换为与在任何给定时刻到达接收器的精确光子数量成正比的电信号。该项目旨在证明这种接收器并利用这种能力来执行对未来量子计算和量子通信系统的基本科学和实际重要性的测量。这项研究在几个学科中都引起了共鸣,从基本材料科学到基础物理学,再到工程学。它为毕业生,本科生和高中生提供了独特的跨学科研究机会。一个关键的教育目标是,随着量子技术通过UT-Austin和UVA的“量子工程”中的广泛访问,独立的课程与工程相交,使学生面临跨学科挑战,并与所有课程材料和所有课程材料一起自由录制的演讲。该项目还将研究与外展活动相结合,例如通过课堂访问,公共讲座和协作展览/旅游与当地博物馆一起启发前K-12学生。技术描述:量子光子学是一种关键的量子技术。量子光子学的关键元素是光子数分辨的光电探测器,它产生与入射光子数量成比例的信号,从而使能够完全访问量子电磁场的红体性质。后者是量子信息中高光子通量应用的关键,例如量子通信中的量子中继器,纠缠蒸馏,量子误差校正和使用挤压状态在连续变量上对连续变量上的容错通用量子计算。许多设备技术提供了光子数量分辨率,但通常在降低的温度下运行,通常需要大型冷却设备和大型阵列才能分辨出适度的数字。该项目研究了一种新的挑战方法,其中单个光子雪崩光电二极管(SPAD)分解为几个波导耦合的“纳米传”段,每个段都通过单个读数来最多可检测到一个光子。目的是在室温下分辨率分辨率,在高带宽处覆盖从可见光到中红外的波长 - 这种组合是必不可少的,但与任何现有技术都无法访问。通过以完全量子模型为基础的设计,并由新的低噪声IIII III-V雪崩光电探测器材料启用,该结构为光子数分辨率提供了高阳性操作器值的测量纯度的潜力。纳米传说单层整合到INP,这是现代长途电信的平台。光子数分解纳米传的功能的试金测试是实时的量子状态断层扫描和Fock状态过滤的演示。量子断层扫描方案又用于表征光子数分辨率。除了实现这些量子断层扫描实验外,预计纳米传说将在量子光子学中加速新的科学突破。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准通过评估来获得支持的。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Review of lateral epitaxial overgrowth of buried dielectric structures for electronics and photonics
- DOI:10.1016/j.pquantelec.2021.100316
- 发表时间:2021-02
- 期刊:
- 影响因子:11.7
- 作者:D. Ironside;A. M. Skipper;Ashlee M. García;S. Bank
- 通讯作者:D. Ironside;A. M. Skipper;Ashlee M. García;S. Bank
Generalized overlap quantum state tomography1
广义重叠量子态断层扫描1
- DOI:10.1103/physrevresearch.2.042002
- 发表时间:2020
- 期刊:
- 影响因子:4.2
- 作者:Nehra, Rajveer;Eaton, Miller;González-Arciniegas, Carlos;Kim, M. S.;Gerrits, Thomas;Lita, Adriana;Nam, Sae Woo;Pfister, Olivier
- 通讯作者:Pfister, Olivier
Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits
- DOI:10.1038/s41566-020-0647-4
- 发表时间:2020-06-22
- 期刊:
- 影响因子:35
- 作者:Maiti, R.;Patil, C.;Sorger, V. J.
- 通讯作者:Sorger, V. J.
Photon-number-resolving segmented detectors based on single-photon avalanche-photodiodes
基于单光子雪崩光电二极管的光子数分辨分段探测器
- DOI:10.1364/oe.380416
- 发表时间:2020
- 期刊:
- 影响因子:3.8
- 作者:Nehra, Rajveer;Chang, Chun-Hung;Yu, Qianhuan;Beling, Andreas;Pfister, Olivier
- 通讯作者:Pfister, Olivier
Classical to Quantum Transitions in Multilayer Plasmonic Metamaterials
多层等离子体超材料中的经典到量子跃迁
- DOI:10.1364/cleo_qels.2019.fth4m.5
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Simmons, E.;Li, K.;Briggs, A.F.;Bank, S.R.;Wasserman, D.;Narimanov, E.;Podolskiy, V.A
- 通讯作者:Podolskiy, V.A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seth Bank其他文献
Anisotropic thermoelectric effect and field-effect devices in epitaxial bismuthene on Si (111)
Si 上外延铋的各向异性热电效应和场效应器件 (111)
- DOI:
10.1088/1361-6528/abaf1f - 发表时间:
2020-09 - 期刊:
- 影响因子:3.5
- 作者:
Wen Zhong;Yu Zhao;Beibei Zhu;Jingjie Sha;Emily S Walker;Seth Bank;Yunfei Chen;Deji Akinw;e;Li Tao - 通讯作者:
Li Tao
Seth Bank的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seth Bank', 18)}}的其他基金
Collaborative Research: Two-photon absorption engineering in laser diodes for ultrafast pulse generation
合作研究:用于超快脉冲生成的激光二极管中的双光子吸收工程
- 批准号:
2133187 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
GOALI: BGaAs and BGaInAs Detectors Lattice-Matched to Silicon
GOALI:与硅晶格匹配的 BGaAs 和 BGaInAs 探测器
- 批准号:
1933836 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
EAGER: Lattice-matched direct-bandgap III-V photodetector materials to silicon
EAGER:与硅晶格匹配的直接带隙 III-V 光电探测器材料
- 批准号:
1838984 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
73rd Device Research Conference (DRC); Ohio State University, Ohio.
第 73 届设备研究会议(DRC);
- 批准号:
1529219 - 财政年份:2015
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Study of Strain-Dependent Auger Recombination Processes in III-V Materials Using Membranes
合作研究:使用膜研究 III-V 族材料中应变相关的俄歇复合过程
- 批准号:
1508603 - 财政年份:2015
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Semiconductor Nanolasers Based on Integration with Silver
基于银集成的半导体纳米激光器
- 批准号:
1408302 - 财政年份:2014
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
EAGER: Advanced Wireless Communication Concepts Applied to Optical Fibers
EAGER:先进无线通信概念应用于光纤
- 批准号:
1230034 - 财政年份:2012
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: High-Efficiency Mid-Infrared Diode Lasers Incorporating Novel Metallic Nanoparticle-Enhanced Tunnel Junctions
职业:采用新型金属纳米粒子增强隧道结的高效中红外二极管激光器
- 批准号:
0954732 - 财政年份:2010
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似国自然基金
塔里木北缘库鲁克塔格地区志留—泥盆纪变质—变形作用及其构造意义
- 批准号:42372240
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
热液流体对白云岩孔隙的差异改造:以塔北南斜坡上震旦统奇格布拉克组为例
- 批准号:42272154
- 批准年份:2022
- 资助金额:57 万元
- 项目类别:面上项目
库鲁克塔格地区下寒武统西大山组黑色页岩的钼同位素特征及其对古海洋环境的指示意义
- 批准号:41903018
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
新疆库鲁克塔格地区古元古代深熔混合岩变质作用P-T-t轨迹及其对碰撞造山过程的约束
- 批准号:41762015
- 批准年份:2017
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
北阿尔金地区阿克塔什塔格杂岩的岩石组合、形成时代及相关构造-岩浆事件
- 批准号:41672186
- 批准年份:2016
- 资助金额:95.0 万元
- 项目类别:面上项目
相似海外基金
QuIC ‐ TAQS: A Photon‐Phonon Quantum Interconnect via Brillouin‐Based Optomechanics in Quartz and Superfluid
QuIC – TAQS:通过石英和超流体中基于布里渊的光力学实现光子 – 声子量子互连
- 批准号:
2137740 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QII-TAQS: A Chip-Scale Spin-Photon Memory Interface with Coherence Exceeding One Second
QII-TAQS:相干性超过一秒的芯片级自旋光子存储器接口
- 批准号:
1936375 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
RAISE: TAQS: Two-Photon Quantum Photonic Logic Gates Enabled by Photonic Bound States
RAISE:TAQS:光子束缚态启用的双光子量子光子逻辑门
- 批准号:
1838996 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
RAISE-TAQS: Integrated Circuits of Single-Photon Sources from Organic Color-Centers
RAISE-TAQS:有机色心单光子源集成电路
- 批准号:
1839165 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
RAISE-TAQS: Quantum Advantage of Broadband Entangled Photon Pairs in Spectroscopy and Metrology
RAISE-TAQS:宽带纠缠光子对在光谱学和计量学中的量子优势
- 批准号:
1839216 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant