A Chip-scale Quantum Information Processor Using Atomic Ions and Photonic Circuits
使用原子离子和光子电路的芯片级量子信息处理器
基本信息
- 批准号:1408495
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Title: A Chip-scale Quantum Information Processor Using Atomic Ions and Photonic CircuitsDriven by the intractability of classical simulation of complex quantum systems, the execution of algorithms pertaining to encryption and certain search problems, quantum state engineering has proven a fruitful field in recent years. Atomic ions are a leading approach to development of quantum information processors. Typically experiments have been limited to a few ions because of the reliance on optical beams propagating in free space for control and readout of the ions. Difficulties with the usual optics approach pose formidable barriers to the useful application of the wealth of promising basic ideas that have been developed in recent years. This work seeks to devise nanophotonic devices and systems in which light is controlled on chip in a fashion allowing thousands of independent optical beams, which can be integrated with electrode structures that confine the ions above the chip. The work would lead to optical control and readout of individual ions at dramatically larger scales than possible with current technology; additionally, integration as proposed would bring certain performance advantages, including lower power requirements on the laser beams due to tighter focusing on individual ions, and reduced noise due to stability of the beams' phase and location with respect to ions. The approach would advance basic capabilities in the field of integrated photonics, and bring closer the goals of arbitrary quantum state manipulation in atomic systems large enough to allow exploration of physics, as well as useful computations, beyond what can be done on current classical computers. Realizing the systems proposed requires developments in a variety of basic photonic devices, and approaches to systems implementations. Ions of interest have transitions spanning the visible spectrum (for 88Sr+, 422-1097 nm), and the impact of the approach is greatest if all wavelengths are guided with low loss in the same dielectric layer. Grating couplers will be developed that convert light propagating in single-mode dielectric waveguides into focused beams propagating towards the ions. Electro-optic devices using integrated non-linear materials as the active core material for high-extinction (40 dB) modulation of beams used for qubit control and readout will be designed and fabricated as well. In addition, we will pursue a post-processing technique whereby devices such as these could be created in chips made in standard CMOS foundries; this would open the possibility for systems bringing together beam-forming optics, modulators and avalanche photodetectors together with trap electrodes and control electronics for control of trapped ion systems with unprecedented scale. A critical advantage of CMOS foundry-made chips as a platform for science and engineering research is the intrinsic reproducibility and ease of dissemination for the experimental devices. For the first time, students of atomic physics and visible photonics will be able to leverage the multi-billion dollar infrastructure of CMOS. By drawing deeply on ideas both in integrated photonics and atomic physics, this work additionally creates new opportunities for interdisciplinary education and collaboration for the undergraduates, graduate students and researchers involved; and in addition to the capabilities for trapped ion systems offered by the work proposed here, we expect cross-fertilization between the two areas will make fertile ground for unforeseen ideas.
摘要题目:利用原子离子和光子电路的芯片级量子信息处理器由于复杂量子系统的经典模拟的难解性、与加密和某些搜索问题有关的算法的执行,量子态工程近年来被证明是一个富有成果的领域。原子离子是开发量子信息处理器的主要方法。由于依赖于在自由空间中传播的光束来控制和读出离子,通常实验仅限于几个离子。常规光学方法的困难对近年来发展起来的大量有前途的基本思想的有效应用构成了巨大的障碍。这项工作旨在设计纳米光子器件和系统,其中光在芯片上以允许数千个独立光束的方式进行控制,这些光束可以与电极结构集成,将离子限制在芯片上方。这项工作将导致光学控制和读出单个离子的规模比目前的技术要大得多;此外,所提出的集成将带来一定的性能优势,包括由于更紧密地聚焦于单个离子而降低了对激光束的功率要求,并且由于光束的相位和位置相对于离子的稳定性而降低了噪声。这种方法将提高集成光子学领域的基本能力,并使在原子系统中任意量子态操纵的目标更接近,这些目标足够大,可以进行物理探索,以及有用的计算,超出当前经典计算机所能做的。实现所提出的系统需要开发各种基本光子器件和系统实现方法。感兴趣的离子具有跨越可见光谱的跃迁(对于88Sr+, 422-1097 nm),如果在同一介电层中以低损耗引导所有波长,则该方法的影响最大。将开发光栅耦合器,将在单模介质波导中传播的光转换成向离子传播的聚焦光束。采用集成非线性材料作为主源材料的电光器件,用于量子比特控制和读出光束的高消光(40 dB)调制。此外,我们将追求后处理技术,使这些设备可以在标准CMOS代工厂制造的芯片中创建;这将为将光束形成光学、调制器和雪崩光电探测器与陷阱电极和控制电子设备结合在一起的系统提供可能性,从而以前所未有的规模控制陷阱离子系统。CMOS晶圆代工芯片作为科学和工程研究平台的一个关键优势是实验器件固有的可重复性和易于传播。第一次,原子物理和可见光子学的学生将能够利用数十亿美元的CMOS基础设施。通过深入吸收集成光子学和原子物理学的思想,这项工作为本科生、研究生和研究人员的跨学科教育和合作创造了新的机会;除了这里提出的工作提供的捕获离子系统的能力之外,我们期望这两个领域之间的交叉施肥将为不可预见的想法提供肥沃的土壤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajeev Ram其他文献
Rajeev Ram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajeev Ram', 18)}}的其他基金
CAREER: Circuit and System Techniques for High-Throughput, Energy-efficient Silicon-Photonic Interconnects in Advanced VLSI Systems
职业:先进 VLSI 系统中高吞吐量、高能效硅光子互连的电路和系统技术
- 批准号:
0844994 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
IDBR: Microscale Continuous Culture Bioreactor Array
IDBR:微型连续培养生物反应器阵列
- 批准号:
0649879 - 财政年份:2007
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Development of: High Resolution, High Sensitivity Scanning Josephson Junction Microscope
开发:高分辨率、高灵敏度扫描约瑟夫森结显微镜
- 批准号:
0079583 - 财政年份:2000
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Magnetic Force Microscopy of Electronic Circuits and Devices
职业:电子电路和设备的磁力显微镜
- 批准号:
9733502 - 财政年份:1998
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
城镇居民亚健康状态的评价方法学及健康管理模式研究
- 批准号:81172775
- 批准年份:2011
- 资助金额:14.0 万元
- 项目类别:面上项目
嵌段共聚物多级自组装的多尺度模拟
- 批准号:20974040
- 批准年份:2009
- 资助金额:33.0 万元
- 项目类别:面上项目
宇宙暗成分物理研究
- 批准号:10675062
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
语义Web的无尺度网络模型及高性能语义搜索算法研究
- 批准号:60503018
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
超声防垢阻垢机理的动态力学分析
- 批准号:10574086
- 批准年份:2005
- 资助金额:35.0 万元
- 项目类别:面上项目
探讨复杂动力网络的同步能力和鲁棒性
- 批准号:60304017
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Chip-scale Atomic Systems for a Quantum Navigator
用于量子导航器的芯片级原子系统
- 批准号:
EP/X012689/1 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Research Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
- 批准号:
2238096 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: Programmable Chip-Scale Quantum-Photonics Platform Based on Frequency-Comb Cluster-States for Multicasting Quantum Networks
合作研究:基于频梳簇态的多播量子网络的可编程芯片级量子光子平台
- 批准号:
2326780 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
NSF Convergence Accelerator-Track C: Chip-Scale Integrated Multibeam Steering System for Cold-Atom Quantum Computing
NSF 融合加速器-Track C:用于冷原子量子计算的芯片级集成多波束转向系统
- 批准号:
2040527 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
QII-TAQS: Chip-Scale Quantum Emulators Based on Polaritonic Lattices
QII-TAQS:基于极化晶格的芯片级量子模拟器
- 批准号:
1936351 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Programmable Chip-Scale Quantum-Photonics Platform Based on Frequency-Comb Cluster-States for Multicasting Quantum Networks
合作研究:基于频梳簇态的多播量子网络的可编程芯片级量子光子平台
- 批准号:
1920742 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Programmable chip-scale quantum photonics platform based on frequency-comb cluster-states for multicasting quantum networks
合作研究:基于频梳簇态的可编程芯片级量子光子平台,用于多播量子网络
- 批准号:
1919355 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
RAISE-EQuIP: Chip-Scale Quantum Memories for Practical Quantum Communication Networks
RAISE-EQuIP:用于实用量子通信网络的芯片级量子存储器
- 批准号:
1842655 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
EFRI ACQUIRE: A chip-scale high-dimensional entanglement and quantum memory module for secure communications
EFRI ACQUIRE:用于安全通信的芯片级高维纠缠和量子存储模块
- 批准号:
1741707 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Plasmonic resonator for quantum dot LEDs responding on a picosecond time scale in the on-chip devices
用于量子点 LED 的等离激元谐振器在片上器件中以皮秒时间尺度响应
- 批准号:
17K14118 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




