Driving forces and orientation selection during texture transformations in thin metal films
金属薄膜织构转变过程中的驱动力和方向选择
基本信息
- 批准号:1411024
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYThin metal films (metal layers less than one tenth the thickness of a human hair) are essential elements in computer chips, optical systems, catalytic converters, and many other high-tech devices. These films are made up of many tiny metal crystals, called "grains". Because the films are so thin, grains tend to orient themselves so that certain directions in their crystal structure align with the plane of the film. The properties of thin films, and therefore the performance and reliability of devices containing thin films, depend very sensitively on these orientations. This topic has been studied for many years, but people do not yet have the ability to predict how a film or a device will behave. In a particularly vexing problem, films that are made with one set of crystal orientations sometimes change to a different set of orientations over time, dramatically changing the properties. To date, it is not possible to predict when this transformation will occur. A number of people have proposed that the initial grains must have defects, imperfections in their crystal structures. These defects represent excess energy, so if new defect-free grains can replace the defective grains, the film can achieve a more stable, lower energy state. This argument, however, does not explain why a new orientation should form. To understand this problem, the Baker group at Cornell University will make films with a wide range of defect structures and will characterize those structures and the associated film behaviors using sophisticated tools such as the Cornell High Energy Synchrotron Source (CHESS), the Ion Beam Laboratory at Sandia National Labs in Albuquerque, NM, and others. They will generate predictive models to help interpret their results. The knowledge generated in this project will help make it possible to continue to miniaturize the next generation of nanofabricated devices and should help to improve performance and reliability in all devices that contain thin metal films. This project will involve undergraduates at Houghton College, a small non-PhD-granting institution in upstate New York. Undergraduate participation will enhance both the scientific output of the project and the educational experience of those students. Houghton students will be advised at Houghton by Prof. Brandon Hoffman, but will spend summers working with the Baker group at Cornell. Baker group graduate students and post-docs are active in outreach activities to area schools and institutions. A benefit of the current project is that images of grain orientation distributions can be quite striking and can often stand on their own as art, making a nice icebreaker for talking about materials science to non-scientists.TECHNICAL SUMMARYMetal thin films are critical elements in many micro- and nano-fabricated technologies including microelectronics, optics, sensors, and catalysts. Due to dimensional constraints, such films are frequently found to be textured; that is, the individual metal crystallites comprising the film are preferentially oriented with certain crystal planes parallel to plane of the film. Films may form with one orientation distribution during deposition, but transform to another over time. Since the properties of the film depend strongly on the orientations present, this texture transformation dramatically changes film properties. Understanding texture and texture transformations is thus critical to understanding the performance and reliability of devices containing thin films. A widely quoted model attributes texture transformation to a competition between interfacial and strain energies. However, recent studies suggest that neither of these driving forces play a dominant role. Thus, it has been suggested that reduction in defect energy, as in bulk recrystallization, provides the driving force. While this might well be true, the orientation selection mechanism is not clear. Indeed, this concept suggests that certain orientations should have intrinsically higher defect densities than others. The existence of such orientation dependent defect densities has not yet been reported. To understand this, the Baker group will study the defect structures in thin metal films and their roles in texture formation and texture transformation. They will produce films using a high-throughput method that allows them to investigate multiple parameters with every film deposition. They will vary deposition parameters to produce different defect densities, induce point defects using ion bombardment in collaboration with the Ion Beam Laboratory and Sandia National Laboratories, and vary planar defect density (stacking faults) by varying stacking fault energy. Film structures will be examined in detail using x-ray diffraction and TEM methods. They will develop models that link driving forces and texture transformation kinetics to allow better prediction and control of thin film texture, and therefore properties.
金属薄膜(厚度小于头发丝十分之一的金属层)是计算机芯片、光学系统、催化转化器和许多其他高科技设备的基本元素。这些薄膜由许多微小的金属晶体组成,称为“颗粒”。由于薄膜非常薄,颗粒倾向于自我定向,使其晶体结构的某些方向与薄膜的平面对齐。薄膜的性质,以及包含薄膜的器件的性能和可靠性,非常敏感地依赖于这些取向。这个话题已经研究了很多年,但人们还没有能力预测电影或设备的行为。在一个特别棘手的问题中,由一组晶体取向制成的薄膜有时会随着时间的推移而改变为另一组取向,从而极大地改变了其性质。到目前为止,还不可能预测这种转变何时发生。许多人提出最初的颗粒在晶体结构上一定有缺陷。这些缺陷代表着多余的能量,所以如果新的无缺陷晶粒能够取代有缺陷的晶粒,薄膜就可以达到更稳定、更低能量的状态。然而,这一论点并不能解释为什么应该形成一种新的方向。为了理解这个问题,康奈尔大学的贝克小组将制作具有各种缺陷结构的薄膜,并将使用复杂的工具(如康奈尔高能同步加速器源(CHESS)、位于新墨西哥州阿尔伯克基的桑迪亚国家实验室的离子束实验室等)来表征这些结构和相关的薄膜行为。他们将生成预测模型来帮助解释他们的结果。在这个项目中产生的知识将有助于使下一代纳米制造设备的小型化成为可能,并有助于提高所有包含薄金属薄膜的设备的性能和可靠性。该项目将涉及霍顿学院(Houghton College)的本科生,霍顿学院是纽约州北部一所小型的不授予博士学位的机构。本科生的参与将提高项目的科学成果和学生的教育经验。霍顿学院的学生将由布兰登·霍夫曼教授指导,但暑假将与康奈尔大学的贝克小组一起工作。贝克集团的研究生和博士后积极参与地区学校和机构的外展活动。当前项目的一个好处是,颗粒取向分布的图像可以非常引人注目,并且通常可以作为一种艺术,为与非科学家谈论材料科学提供了一个很好的破冰机会。金属薄膜是许多微纳米制造技术的关键元素,包括微电子、光学、传感器和催化剂。由于尺寸限制,这种薄膜经常被发现有织构;即,组成薄膜的单个金属晶体优先取向于平行于薄膜平面的某些晶体平面。在沉积过程中,薄膜可能以一种取向分布形成,但随着时间的推移转变为另一种取向分布。由于薄膜的性能很大程度上取决于存在的取向,因此这种纹理转换极大地改变了薄膜的性能。因此,理解纹理和纹理转换对于理解包含薄膜的器件的性能和可靠性至关重要。一个被广泛引用的模型将纹理转换归因于界面能和应变能之间的竞争。然而,最近的研究表明,这两种驱动力都不起主导作用。因此,有人认为缺陷能量的降低,如在体再结晶中,提供了驱动力。虽然这很可能是真的,但取向选择机制并不清楚。事实上,这个概念表明某些取向应该具有比其他取向更高的缺陷密度。这种依赖于取向的缺陷密度的存在尚未被报道。为了理解这一点,Baker小组将研究金属薄膜中的缺陷结构及其在织构形成和织构转变中的作用。他们将使用高通量方法生产薄膜,使他们能够在每次薄膜沉积中研究多个参数。他们将改变沉积参数以产生不同的缺陷密度,与离子束实验室和桑迪亚国家实验室合作使用离子轰击诱导点缺陷,并通过改变层错能量来改变平面缺陷密度(层错)。薄膜结构将使用x射线衍射和透射电镜方法进行详细检查。他们将开发将驱动力和织构转化动力学联系起来的模型,以便更好地预测和控制薄膜的织构以及性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shefford Baker其他文献
Shefford Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shefford Baker', 18)}}的其他基金
Metastable phases in BCC thin films: formation, stability, and properties
BCC 薄膜中的亚稳态相:形成、稳定性和性能
- 批准号:
1810138 - 财政年份:2018
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Texture and Texture Transformations in Thin Metal Films
金属薄膜中的纹理和纹理变换
- 批准号:
1106223 - 财政年份:2011
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Microstructure and Mechanical Behavior of Tantalum Thin Films
钽薄膜的微观结构和机械性能
- 批准号:
0706507 - 财政年份:2007
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
US-France Cooperative Research: Inhomogeneous Strains in Thin Films and Nanostructures
美法合作研究:薄膜和纳米结构中的不均匀应变
- 批准号:
0233283 - 财政年份:2003
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Stresses, Deformation, and Dislocations in Thin Films: Combining Modeling and Simulations with Experiments
薄膜中的应力、变形和位错:将建模、仿真与实验相结合
- 批准号:
0311848 - 财政年份:2003
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Development of X-ray Diffraction Equipment for Research, Education, Training, and Outreach at a Synchrotron Source
开发用于同步加速器源的研究、教育、培训和推广的 X 射线衍射设备
- 批准号:
0216881 - 财政年份:2002
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Acquisition of an Atomic Force Microscope for Mechanical and Magnetic Property Measurements in Small Dimensions and Student Training
获取用于小尺寸机械和磁性测量的原子力显微镜和学生培训
- 批准号:
9975924 - 财政年份:1999
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
U.S.-Germany Cooperative Research: Stresses and Deformation Mechanisms in Thin Metal Films
美德合作研究:金属薄膜中的应力和变形机制
- 批准号:
9815702 - 财政年份:1999
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
CAREER: Deformation Mechanisms in Thin Metal Films
职业:金属薄膜的变形机制
- 批准号:
9875119 - 财政年份:1999
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
相似国自然基金
基于ForCES的软件定义网络(SDN)研究
- 批准号:61379120
- 批准年份:2013
- 资助金额:73.0 万元
- 项目类别:面上项目
ForCES体系结构的流量特征分析及矩阵估算建模研究
- 批准号:61102074
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
ForCES传输映射层(TML)关键技术问题研究
- 批准号:60903214
- 批准年份:2009
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于开放架构路由器的DiffServ网络资源管理研究
- 批准号:60773182
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
松散耦合型分布式路由器的若干关键技术研究
- 批准号:60603072
- 批准年份:2006
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
转发件和控制件分离(ForCES)网络体系结构及关键技术研究
- 批准号:60573116
- 批准年份:2005
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Implications of Global Economic Forces for Domestic Monetary Policy
全球经济力量对国内货币政策的影响
- 批准号:
DP240100970 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Discovery Projects
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Tools to Control and Monitor Van der Waals Forces between Nanoparticles: Quantitative Insights on Biological, Environmental, and Fungal Cell Interactions.
控制和监测纳米颗粒之间范德华力的工具:对生物、环境和真菌细胞相互作用的定量见解。
- 批准号:
2335597 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Interplay between orientation and lift forces on non-spherical particles in complex fluids
复杂流体中非球形颗粒的方向力和升力之间的相互作用
- 批准号:
2341154 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Forces in Nature: Tissue mechanics and cell sociology
自然力量:组织力学和细胞社会学
- 批准号:
FL230100100 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Australian Laureate Fellowships
An Empirical Study of the Determinants and Consequences of Citizens' Confidence in the Armed Forces
公民对武装部队信心的决定因素及其后果的实证研究
- 批准号:
23KJ2013 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for JSPS Fellows
INVESTIGATING IN VIVO COMPRESSIVE FORCES: CELL DIVISION, NUCLEAR INTEGRITY, CANCER INITIATION
研究体内压力:细胞分裂、核完整性、癌症发生
- 批准号:
MR/W024519/1 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Research Grant
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Particle-surface adhesive forces and their role in resuspension phenomena
颗粒表面粘附力及其在再悬浮现象中的作用
- 批准号:
2885413 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Studentship
Evolutionary forces driving the diversity of protist symbioses
驱动原生生物共生多样性的进化力量
- 批准号:
23K14256 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists