Numerical Methods and Analysis for Induced-Charge Electrokinetic Flow with Deformable Interfaces

可变形界面感应电荷动电流的数值方法与分析

基本信息

  • 批准号:
    1412789
  • 负责人:
  • 金额:
    $ 37.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2019-01-31
  • 项目状态:
    已结题

项目摘要

This project is an investigation of fundamental problems from fluid dynamics that arise in biology and microtechnology. Its focus is on the development of new mathematical models and efficient numerical methods to study the manipulation by electric fields of the shape and position of cells, vesicles, and drops in electrolytic fluids. These so-called 'electrokinetic techniques' are among the most common methods for manipulating particles and fluids in micro-scale devices and biological applications. For example, electric fields are applied to induce shape changes in cells and vesicles, and this is used to infer membrane properties. Electric fields are also used to form transient pores in membranes, which is an important technique to load cells with molecules for drug delivery or gene therapy. Impacts of the proposed research include the development of new mathematical models and numerical methods that will be of benefit to scientists and engineers studying electrokinetic phenomena in biology and engineering. An additional impact of this project will be the education and involvement of graduate students. The interdisciplinary training they receive will be valuable preparation for a range of careers in mathematics and science.During the interfacial flow of an ionic fluid that is driven by an electric field, a screening cloud of ions develops at the interface and forms an electrochemical double layer or 'Debye layer'. The electric field both acts on the ion cloud it induces and drives both it and the surrounding fluid into motion. This is known as 'induced-charge electrokinetic flow', and it is an important phenomenon in applications. We address a significant difficulty in the numerical computation of such flows in the practically important limit of thin double layers, by developing a fast and accurate hybrid or multiscale numerical method that incorporates an asymptotic analysis of the layer's dynamics into a novel boundary integral formulation of the interfacial free boundary problem. A central theme of the current project is the development of a hybrid method for electrokinetic flow about a membrane. The algorithm will incorporate an analysis of the high-wavenumber or small-scale component of the elastic and electrostatic stresses on a membrane into a nonstiff method that is capable of handling the multiple time and space scales inherent in the problem. The method will be used to study canonical problems in the electrodeformation of drops, vesicles, and cells, and to examine vesicle manufacture by electroformation and coalescence by electrofusion. The numerical investigations will be complemented by analytical studies that will be used to justify existing reduced or 'lumped parameter' models for electrohydrodynamic flow, and to derive new models. The investigators also propose to develop a hybrid method for problems with ionic surfactant, which combines features of both electrokinetic flow and soluble surfactant.
该项目是对生物学和微技术中出现的流体动力学基本问题的调查。 其重点是发展新的数学模型和有效的数值方法,以研究电场对电解液中细胞,囊泡和液滴的形状和位置的操纵。 这些所谓的“电动技术”是在微尺度设备和生物应用中操纵粒子和流体的最常见方法之一。 例如,施加电场以诱导细胞和囊泡的形状变化,并且这用于推断膜性质。电场也用于在膜中形成瞬时孔,这是一种重要的技术,用于将分子装载到细胞中用于药物递送或基因治疗。 拟议研究的影响包括开发新的数学模型和数值方法,这将有利于科学家和工程师研究生物学和工程学中的电动现象。 该项目的另一个影响将是研究生的教育和参与。他们接受的跨学科培训将为他们在数学和科学领域的职业生涯做好宝贵的准备。在电场驱动的离子流体的界面流动过程中,在界面处形成屏蔽离子云,并形成电化学双层或“德拜层”。电场既作用于离子云,又诱导和驱动离子云和周围的流体运动。这被称为“感应电荷动电流”,并且它是应用中的重要现象。我们解决了一个显着的困难,在薄双层的实际重要的限制,通过开发一个快速,准确的混合或多尺度数值方法,将层的动态渐近分析到一个新的边界积分公式的界面自由边界问题的数值计算。 当前项目的一个中心主题是开发一种用于膜周围电动流的混合方法。该算法将结合到一个非刚性的方法,能够处理多个时间和空间尺度固有的问题的高波数或小尺度的组件上的弹性和静电应力的膜的分析。该方法将被用来研究典型的问题,在电变形的下降,囊泡,和细胞,并检查囊泡制造电形成和聚结电融合。数值调查将补充分析研究,将被用来证明现有的减少或“集总参数”模型的电流体动力学流,并得出新的模型。 研究人员还建议开发一种混合方法来解决离子表面活性剂的问题,该方法结合了电动流动和可溶性表面活性剂的特点。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulation and validation of surfactant-laden drops in two-dimensional Stokes flow
  • DOI:
    10.1016/j.jcp.2018.12.044
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Pålsson;M. Siegel;A. Tornberg
  • 通讯作者:
    S. Pålsson;M. Siegel;A. Tornberg
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Siegel其他文献

Motion of a disk embedded in a nearly inviscid Langmuir film. Part 1. Translation
嵌入几乎无粘性朗缪尔薄膜中的圆盘的运动。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    E. Yariv;Rodolfo Brandão;Michael Siegel;H. A. Stone
  • 通讯作者:
    H. A. Stone
Tu1662: COMPARISON OF QUALITY PERFORMANCE METRICS IN SCREENING AND SURVEILLANCE COLONOSCOPY: A SINGLE-CENTER EXPERIENCE
  • DOI:
    10.1016/s0016-5085(22)62444-2
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    James S. Love;Meredith Yellen;Jeffrey Rebhun;Michael Siegel;Asim Shuja
  • 通讯作者:
    Asim Shuja
Highlights from the Field of Pediatric Dermatology Research from the 2023 PeDRA Annual Conference
2023 年小儿皮肤科研究领域亮点来自于小儿皮肤科研究协会年会
  • DOI:
    10.1016/j.jid.2024.09.014
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Hannah R. Chang;Morgan Dykman;Leslie Castelo-Soccio;Colleen H. Cotton;Carrie C. Coughlin;Elena B. Hawryluk;Leslie Lawley;Lara Wine Lee;Kalyani Marathe;Dawn H. Siegel;JiaDe Yu;PeDRA Focused Study Group Leads;Michael Siegel;Esteban Fernández Faith;Lisa Arkin
  • 通讯作者:
    Lisa Arkin
Effective Partnering in Conducting Benefit-Risk Patient Preference Studies: Perspectives From a Patient Advocacy Organization, a Pharmaceutical Company, and Academic Stated-Preference Researchers
  • DOI:
    10.1177/2168479017746404
  • 发表时间:
    2018-12-30
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Anne M. Wolka;Angelyn O. Fairchild;Shelby D. Reed;Greg Anglin;F. Reed Johnson;Michael Siegel;Rebecca Noel
  • 通讯作者:
    Rebecca Noel
Capturing the Dynamic Nature of Cyber Risk: Evidence from an Explorative Case Study
捕捉网络风险的动态本质:探索性案例研究的证据
  • DOI:
    10.24251/hicss.2023.738
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    29.3
  • 作者:
    S. Zeijlemaker;Michael Siegel
  • 通讯作者:
    Michael Siegel

Michael Siegel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Siegel', 18)}}的其他基金

Conference: Conference on Frontiers in Applied and Computational Mathematics (FACM 2023): New trends in computational wave propagation and imaging
会议:应用与计算数学前沿会议(FACM 2023):计算波传播和成像的新趋势
  • 批准号:
    2246813
  • 财政年份:
    2023
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Standard Grant
Numerical Methods and Analysis for Interfacial Flow with Ionic Fluids and Surfactants
离子流体和表面活性剂界面流动的数值方法与分析
  • 批准号:
    1909407
  • 财政年份:
    2019
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Standard Grant
Conferences on Frontiers in Applied and Computational Mathematics: 2015-2017
应用与计算数学前沿会议:2015-2017
  • 批准号:
    1517152
  • 财政年份:
    2015
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Standard Grant
Conference on Frontiers in Applied and Computational Mathematics 2014, May 22 - 23, 2014
2014年应用与计算数学前沿会议,2014年5月22日至23日
  • 批准号:
    1444295
  • 财政年份:
    2014
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Standard Grant
EXTREEMS-QED: Research and training in computational and data-enabled science and engineering for undergraduates in the mathematical sciences at NJIT
EXTREEMS-QED:为 NJIT 数学科学本科生提供计算和数据支持的科学与工程方面的研究和培训
  • 批准号:
    1331010
  • 财政年份:
    2013
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Continuing Grant
Numerical methods and analysis for interfacial fluid flow with soluble surfactant
可溶性表面活性剂界面流体流动的数值方法与分析
  • 批准号:
    1009105
  • 财政年份:
    2010
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Efficient surface-based numerical methods for 3D interfacial flow with surface tension
合作研究:基于表面的高效数值方法,用于具有表面张力的 3D 界面流动
  • 批准号:
    1016406
  • 财政年份:
    2010
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Numerics and Analysis of Singularities for the Euler Equations
合作研究:欧拉方程的数值和奇异性分析
  • 批准号:
    0707263
  • 财政年份:
    2007
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Standard Grant
Analysis and numerical computations of free boundaries in fluid dynamics: surfactant solubility and elastic fibers
流体动力学中自由边界的分析和数值计算:表面活性剂溶解度和弹性纤维
  • 批准号:
    0708977
  • 财政年份:
    2007
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularity Formation for the Three-Dimensional Euler Equations and Related Problems
FRG:协作研究:三维欧拉方程的奇异性形成及相关问题
  • 批准号:
    0354560
  • 财政年份:
    2004
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
  • 批准号:
    2325195
  • 财政年份:
    2023
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Standard Grant
CAREER: Numerical Analysis for Meshfree and Particle Methods via Nonlocal Models
职业:通过非局部模型进行无网格和粒子方法的数值分析
  • 批准号:
    2240180
  • 财政年份:
    2023
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Continuing Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
  • 批准号:
    2325196
  • 财政年份:
    2023
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Standard Grant
Numerical Methods in Noncommutative Matrix Analysis
非交换矩阵分析中的数值方法
  • 批准号:
    2110398
  • 财政年份:
    2021
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2107934
  • 财政年份:
    2021
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Standard Grant
A novel development of optimization and deep learning methods based on the idea of structure-preserving numerical analysis
基于结构保持数值分析思想的优化和深度学习方法的新发展
  • 批准号:
    21H03452
  • 财政年份:
    2021
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical Analysis and Numerical Methods for Peridynamics and Nonlocal Models
近场动力学和非局部模型的数学分析和数值方法
  • 批准号:
    2044945
  • 财政年份:
    2020
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Standard Grant
Establishing analysis methods for characterizing heat transport via numerical calculation
通过数值计算建立表征热传输的分析方法
  • 批准号:
    20K14659
  • 财政年份:
    2020
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collisional Kinetic Transport: Analysis and Numerical Methods
碰撞动力学输运:分析和数值方法
  • 批准号:
    2009736
  • 财政年份:
    2020
  • 资助金额:
    $ 37.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了