Numerical Methods and Analysis for Induced-Charge Electrokinetic Flow with Deformable Interfaces
可变形界面感应电荷动电流的数值方法与分析
基本信息
- 批准号:1412789
- 负责人:
- 金额:$ 37.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is an investigation of fundamental problems from fluid dynamics that arise in biology and microtechnology. Its focus is on the development of new mathematical models and efficient numerical methods to study the manipulation by electric fields of the shape and position of cells, vesicles, and drops in electrolytic fluids. These so-called 'electrokinetic techniques' are among the most common methods for manipulating particles and fluids in micro-scale devices and biological applications. For example, electric fields are applied to induce shape changes in cells and vesicles, and this is used to infer membrane properties. Electric fields are also used to form transient pores in membranes, which is an important technique to load cells with molecules for drug delivery or gene therapy. Impacts of the proposed research include the development of new mathematical models and numerical methods that will be of benefit to scientists and engineers studying electrokinetic phenomena in biology and engineering. An additional impact of this project will be the education and involvement of graduate students. The interdisciplinary training they receive will be valuable preparation for a range of careers in mathematics and science.During the interfacial flow of an ionic fluid that is driven by an electric field, a screening cloud of ions develops at the interface and forms an electrochemical double layer or 'Debye layer'. The electric field both acts on the ion cloud it induces and drives both it and the surrounding fluid into motion. This is known as 'induced-charge electrokinetic flow', and it is an important phenomenon in applications. We address a significant difficulty in the numerical computation of such flows in the practically important limit of thin double layers, by developing a fast and accurate hybrid or multiscale numerical method that incorporates an asymptotic analysis of the layer's dynamics into a novel boundary integral formulation of the interfacial free boundary problem. A central theme of the current project is the development of a hybrid method for electrokinetic flow about a membrane. The algorithm will incorporate an analysis of the high-wavenumber or small-scale component of the elastic and electrostatic stresses on a membrane into a nonstiff method that is capable of handling the multiple time and space scales inherent in the problem. The method will be used to study canonical problems in the electrodeformation of drops, vesicles, and cells, and to examine vesicle manufacture by electroformation and coalescence by electrofusion. The numerical investigations will be complemented by analytical studies that will be used to justify existing reduced or 'lumped parameter' models for electrohydrodynamic flow, and to derive new models. The investigators also propose to develop a hybrid method for problems with ionic surfactant, which combines features of both electrokinetic flow and soluble surfactant.
该项目是对生物学和微技术产生的流体动力学基本问题的研究。 它的重点是开发新的数学模型和有效的数值方法,以研究电池,囊泡和电解液中细胞形状和位置的电场操作。 这些所谓的“电动技术”是在微观设备和生物应用中操纵颗粒和流体的最常见方法之一。 例如,电场用于诱导细胞和囊泡的形状变化,这用于推断膜性质。电场还用于在膜上形成瞬态孔,这是将细胞用药物递送或基因治疗分子加载细胞的重要技术。 拟议的研究的影响包括开发新的数学模型和数值方法,这对研究生物学和工程学中电动现象的科学家和工程师有益。 该项目的另一个影响将是研究生的教育和参与。他们接受的跨学科培训将为数学和科学领域的一系列职业提供宝贵的准备。在由电场驱动的离子流体的界面流中,离子的筛选云在界面上发展并形成电化学双层或“ Debye层”。电场两者都作用于离子云上,它引起并将其驱动和周围的流体运动。这被称为“诱导电动电动流动流”,它是应用中的重要现象。我们通过开发快速准确的混合或多尺度数值方法来解决此类流量的数值计算,从而解决此类流的数值计算,该方法将层动力学的渐近分析纳入了界面自由边界问题的新型边界积分公式中。 当前项目的一个核心主题是开发围绕膜的电动流量的混合方法。该算法将结合膜上的弹性和静电应力的高波或小规模分量的分析,中的非固定方法,该方法能够处理问题中固有的多个时间和空间量表。该方法将用于研究液滴,囊泡和细胞的电去构造中的规范问题,并通过电渗封来检查囊泡制造囊泡。分析研究将补充数值研究,这些研究将用于证明现有的减少或“集结参数”模型,用于电水力流动流,并得出新模型。 研究人员还建议为离子表面活性剂问题开发一种混合方法,该方法结合了电动流和可溶性表面活性剂的特征。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulation and validation of surfactant-laden drops in two-dimensional Stokes flow
- DOI:10.1016/j.jcp.2018.12.044
- 发表时间:2018-06
- 期刊:
- 影响因子:0
- 作者:S. Pålsson;M. Siegel;A. Tornberg
- 通讯作者:S. Pålsson;M. Siegel;A. Tornberg
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Siegel其他文献
Tu1662: COMPARISON OF QUALITY PERFORMANCE METRICS IN SCREENING AND SURVEILLANCE COLONOSCOPY: A SINGLE-CENTER EXPERIENCE
- DOI:
10.1016/s0016-5085(22)62444-2 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
James S. Love;Meredith Yellen;Jeffrey Rebhun;Michael Siegel;Asim Shuja - 通讯作者:
Asim Shuja
Motion of a disk embedded in a nearly inviscid Langmuir film. Part 1. Translation
嵌入几乎无粘性朗缪尔薄膜中的圆盘的运动。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.7
- 作者:
E. Yariv;Rodolfo Brandão;Michael Siegel;H. A. Stone - 通讯作者:
H. A. Stone
Revolutionizing Board Cyber-Risk Management Using Collaborative Gaming
使用协作游戏彻底改变董事会网络风险管理
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tony Delvecchio;Sander Zeijlemaker;Giancarlo De Bernardis;Michael Siegel - 通讯作者:
Michael Siegel
Daytime intensive monitoring
白天密集监控
- DOI:
- 发表时间:
1987 - 期刊:
- 影响因子:9.9
- 作者:
A. Rowan;Michael Siegel;D. Rosenbaum - 通讯作者:
D. Rosenbaum
Systematically Understanding the Cyber Attack Business: A Survey
系统地了解网络攻击业务:一项调查
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Keman Huang;Michael Siegel;Madnick Stuart - 通讯作者:
Madnick Stuart
Michael Siegel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Siegel', 18)}}的其他基金
Conference: Conference on Frontiers in Applied and Computational Mathematics (FACM 2023): New trends in computational wave propagation and imaging
会议:应用与计算数学前沿会议(FACM 2023):计算波传播和成像的新趋势
- 批准号:
2246813 - 财政年份:2023
- 资助金额:
$ 37.4万 - 项目类别:
Standard Grant
Numerical Methods and Analysis for Interfacial Flow with Ionic Fluids and Surfactants
离子流体和表面活性剂界面流动的数值方法与分析
- 批准号:
1909407 - 财政年份:2019
- 资助金额:
$ 37.4万 - 项目类别:
Standard Grant
Conferences on Frontiers in Applied and Computational Mathematics: 2015-2017
应用与计算数学前沿会议:2015-2017
- 批准号:
1517152 - 财政年份:2015
- 资助金额:
$ 37.4万 - 项目类别:
Standard Grant
Conference on Frontiers in Applied and Computational Mathematics 2014, May 22 - 23, 2014
2014年应用与计算数学前沿会议,2014年5月22日至23日
- 批准号:
1444295 - 财政年份:2014
- 资助金额:
$ 37.4万 - 项目类别:
Standard Grant
EXTREEMS-QED: Research and training in computational and data-enabled science and engineering for undergraduates in the mathematical sciences at NJIT
EXTREEMS-QED:为 NJIT 数学科学本科生提供计算和数据支持的科学与工程方面的研究和培训
- 批准号:
1331010 - 财政年份:2013
- 资助金额:
$ 37.4万 - 项目类别:
Continuing Grant
Numerical methods and analysis for interfacial fluid flow with soluble surfactant
可溶性表面活性剂界面流体流动的数值方法与分析
- 批准号:
1009105 - 财政年份:2010
- 资助金额:
$ 37.4万 - 项目类别:
Continuing Grant
Collaborative Research: Efficient surface-based numerical methods for 3D interfacial flow with surface tension
合作研究:基于表面的高效数值方法,用于具有表面张力的 3D 界面流动
- 批准号:
1016406 - 财政年份:2010
- 资助金额:
$ 37.4万 - 项目类别:
Continuing Grant
Collaborative Research: Numerics and Analysis of Singularities for the Euler Equations
合作研究:欧拉方程的数值和奇异性分析
- 批准号:
0707263 - 财政年份:2007
- 资助金额:
$ 37.4万 - 项目类别:
Standard Grant
Analysis and numerical computations of free boundaries in fluid dynamics: surfactant solubility and elastic fibers
流体动力学中自由边界的分析和数值计算:表面活性剂溶解度和弹性纤维
- 批准号:
0708977 - 财政年份:2007
- 资助金额:
$ 37.4万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularity Formation for the Three-Dimensional Euler Equations and Related Problems
FRG:协作研究:三维欧拉方程的奇异性形成及相关问题
- 批准号:
0354560 - 财政年份:2004
- 资助金额:
$ 37.4万 - 项目类别:
Standard Grant
相似国自然基金
Stokes界面问题非拟合压力鲁棒数值方法与理论分析
- 批准号:12301469
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CO2地质封存岩石渗流-流变耦合长期变形机理与数值分析方法
- 批准号:52378326
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
若干非线性偏微分方程的数值方法设计和分析
- 批准号:12371408
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
能源桩劣化机理及多尺度多场耦合数值分析方法
- 批准号:52378406
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
若干谱方法与高振荡问题的理论分析和数值方法研究
- 批准号:12371367
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 37.4万 - 项目类别:
Standard Grant
Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
- 批准号:
23K17655 - 财政年份:2023
- 资助金额:
$ 37.4万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325195 - 财政年份:2023
- 资助金额:
$ 37.4万 - 项目类别:
Standard Grant
BCC for Prostate Cancer: Discovery and Translation of Biomarkers for Clinical Unmet Needs
前列腺癌的 BCC:发现和转化生物标志物以满足临床未满足的需求
- 批准号:
10701245 - 财政年份:2023
- 资助金额:
$ 37.4万 - 项目类别:
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
- 批准号:
23K03232 - 财政年份:2023
- 资助金额:
$ 37.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)